Modernization and intense industrialization have led to a substantial improvement in people’s quality of life. However, the aspiration for achieving an improved quality of life results in environmental contamination....
详细信息
Most optimization problems of practical significance are typically solved by highly configurable parameterized *** achieve the best performance on a problem instance,a trial-and-error configuration process is required...
详细信息
Most optimization problems of practical significance are typically solved by highly configurable parameterized *** achieve the best performance on a problem instance,a trial-and-error configuration process is required,which is very costly and even prohibitive for problems that are already computationally intensive,*** problems associated with machine learning *** the past decades,many studies have been conducted to accelerate the tedious configuration process by learning from a set of training *** article refers to these studies as learn to optimize and reviews the progress achieved.
Drones are flying objects that may be controlled remotely or programmed to do a wide range of tasks, including aerial photography, videography, surveys, crop and animal monitoring, search and rescue missions, package ...
详细信息
Multi-access edge computing has become an effective paradigm to provide offloading services for computation-intensive and delay-sensitive tasks on vehicles. However, high mobility of vehicles usually incurs spatio-tem...
详细信息
Researchers have recently created several deep learning strategies for various tasks, and facial recognition has made remarkable progress in employing these techniques. Face recognition is a noncontact, nonobligatory,...
详细信息
Researchers have recently created several deep learning strategies for various tasks, and facial recognition has made remarkable progress in employing these techniques. Face recognition is a noncontact, nonobligatory, acceptable, and harmonious biometric recognition method with a promising national and social security future. The purpose of this paper is to improve the existing face recognition algorithm, investigate extensive data-driven face recognition methods, and propose a unique automated face recognition methodology based on generative adversarial networks (GANs) and the center symmetric multivariable local binary pattern (CS-MLBP). To begin, this paper employs the center symmetric multivariant local binary pattern (CS-MLBP) algorithm to extract the texture features of the face, addressing the issue that C2DPCA (column-based two-dimensional principle component analysis) does an excellent job of removing the global characteristics of the face but struggles to process the local features of the face under large samples. The extracted texture features are combined with the international features retrieved using C2DPCA to generate a multifeatured face. The proposed method, GAN-CS-MLBP, syndicates the power of GAN with the robustness of CS-MLBP, resulting in an accurate and efficient face recognition system. Deep learning algorithms, mainly neural networks, automatically extract discriminative properties from facial images. The learned features capture low-level information and high-level meanings, permitting the model to distinguish among dissimilar persons more successfully. To assess the proposed technique’s GAN-CS-MLBP performance, extensive experiments are performed on benchmark face recognition datasets such as LFW, YTF, and CASIA-WebFace. Giving to the findings, our method exceeds state-of-the-art facial recognition systems in terms of recognition accuracy and resilience. The proposed automatic face recognition system GAN-CS-MLBP provides a solid basis for a
In the last decade, technical advancements and faster Internet speeds have also led to an increasing number ofmobile devices and users. Thus, all contributors to society, whether young or old members, can use these mo...
详细信息
In the last decade, technical advancements and faster Internet speeds have also led to an increasing number ofmobile devices and users. Thus, all contributors to society, whether young or old members, can use these mobileapps. The use of these apps eases our daily lives, and all customers who need any type of service can accessit easily, comfortably, and efficiently through mobile apps. Particularly, Saudi Arabia greatly depends on digitalservices to assist people and visitors. Such mobile devices are used in organizing daily work schedules and services,particularly during two large occasions, Umrah and Hajj. However, pilgrims encounter mobile app issues such asslowness, conflict, unreliability, or user-unfriendliness. Pilgrims comment on these issues on mobile app platformsthrough reviews of their experiences with these digital services. Scholars have made several attempts to solve suchmobile issues by reporting bugs or non-functional requirements by utilizing user ***, solving suchissues is a great challenge, and the issues still exist. Therefore, this study aims to propose a hybrid deep learningmodel to classify and predict mobile app software issues encountered by millions of pilgrims during the Hajj andUmrah periods from the user perspective. Firstly, a dataset was constructed using user-generated comments fromrelevant mobile apps using natural language processing methods, including information extraction, the annotationprocess, and pre-processing steps, considering a multi-class classification problem. Then, several experimentswere conducted using common machine learning classifiers, Artificial Neural Networks (ANN), Long Short-TermMemory (LSTM), and Convolutional Neural Network Long Short-Term Memory (CNN-LSTM) architectures, toexamine the performance of the proposed model. Results show 96% in F1-score and accuracy, and the proposedmodel outperformed the mentioned models.
In order to maintain sustainable agriculture, it is vital to monitor plant health. Since all species of plants are prone to characteristic diseases, it necessitates regular surveillance to search for any symptoms, whi...
详细信息
The need for renewable energy access has led to the use of variable input converter approaches because renewable energy sources often generate electricity in an unpredictable manner. A high-performance multi-input boo...
详细信息
The need for renewable energy access has led to the use of variable input converter approaches because renewable energy sources often generate electricity in an unpredictable manner. A high-performance multi-input boost converter is developed to provide the necessary output voltage and power while accommodating variations in input sources. This converter is specifically designed for the efficient usage of renewable energy. The proposed architecture integrates three separate unidirectional input power sources: photovoltaics, fuel cells, and storage system batteries. The architecture has five switches, and the implementation of each switch in the converter is achieved by applying the calculated duty ratios in various operating states. The closed-loop response of the converter with a proportional-integral (PI) controller-based switching system is examined by analyzing the Matlab-Simulink model utilizing a proportional-integral derivative (PID) tuner. The controller can deliver the desired output voltage of 400 V and an average power of 2 kW while exhibiting low switching transient effects. Therefore, the proposed multi-input interleaved boost converter demonstrates robust results for real-time applications by effectively harnessing renewable power sources.
Cancer remains a leading cause of mortality worldwide, with early detection and accurate diagnosis critical to improving patient outcomes. While computer-aided diagnosis systems powered by deep learning have shown con...
详细信息
This study proposes a malicious code detection model DTL-MD based on deep transfer learning, which aims to improve the detection accuracy of existing methods in complex malicious code and data scarcity. In the feature...
详细信息
暂无评论