Automated detection of plant diseases is crucial as it simplifies the task of monitoring large farms and identifies diseases at their early stages to mitigate further plant degradation. Besides the decline in plant he...
详细信息
Most current Visual Question Answering (VQA) methods struggle to achieve effective cross-modal interaction between visual and semantic information, resulting in difficulties in accurately combining visual content with...
详细信息
Disastrous situations pose a formidable challenge, testing our resilience against nature's fury and the race against time to prevent the loss of human life. It is noted that in such situations that Microblogging p...
详细信息
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their *** the analysis of these reviews is vital for efficient review *** traditional machine learning(M...
详细信息
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their *** the analysis of these reviews is vital for efficient review *** traditional machine learning(ML)models rely on basic word-based feature extraction,deep learning(DL)methods,enhanced with advanced word embeddings,have shown superior *** research introduces a novel aspectbased sentiment analysis(ABSA)framework to classify app reviews based on key non-functional requirements,focusing on usability factors:effectiveness,efficiency,and *** propose a hybrid DL model,combining BERT(Bidirectional Encoder Representations from Transformers)with BiLSTM(Bidirectional Long Short-Term Memory)and CNN(Convolutional Neural Networks)layers,to enhance classification *** analysis against state-of-the-art models demonstrates that our BERT-BiLSTM-CNN model achieves exceptional performance,with precision,recall,F1-score,and accuracy of 96%,87%,91%,and 94%,*** contributions of this work include a refined ABSA-based relabeling framework,the development of a highperformance classifier,and the comprehensive relabeling of the Instagram App Reviews *** advancements provide valuable insights for software developers to enhance usability and drive user-centric application development.
The rapid advancement and proliferation of Cyber-Physical Systems (CPS) have led to an exponential increase in the volume of data generated continuously. Efficient classification of this streaming data is crucial for ...
详细信息
Dear Editor,The distributed constraint optimization problems(DCOPs) [1]-[3]provide an efficient model for solving the cooperative problems of multi-agent systems, which has been successfully applied to model the real-...
Dear Editor,The distributed constraint optimization problems(DCOPs) [1]-[3]provide an efficient model for solving the cooperative problems of multi-agent systems, which has been successfully applied to model the real-world problems like the distributed scheduling [4], sensor network management [5], [6], multi-robot coordination [7], and smart grid [8]. However, DCOPs were not well suited to solve the problems with continuous variables and constraint cost in functional form, such as the target tracking sensor orientation [9], the air and ground cooperative surveillance [10], and the sensor network coverage [11].
Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs) is not only constitute an encouraging research domain but also represent a promising industrial trend that permits the development of various IoT-based ...
详细信息
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as o...
详细信息
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel *** awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and *** techniques mitigated overfitting,stabilized training,and improved generalization *** LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,*** findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature *** additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial *** instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often *** study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are *** research m
Satellite image classification is the most significant remote sensing method for computerized analysis and pattern detection of satellite data. This method relies on the image's diversity structures and necessitat...
详细信息
1 Introduction On-device deep learning(DL)on mobile and embedded IoT devices drives various applications[1]like robotics image recognition[2]and drone swarm classification[3].Efficient local data processing preserves ...
详细信息
1 Introduction On-device deep learning(DL)on mobile and embedded IoT devices drives various applications[1]like robotics image recognition[2]and drone swarm classification[3].Efficient local data processing preserves privacy,enhances responsiveness,and saves ***,current ondevice DL relies on predefined patterns,leading to accuracy and efficiency *** is difficult to provide feedback on data processing performance during the data acquisition stage,as processing typically occurs after data acquisition.
暂无评论