In recent times, the system's mathematical expression and operation have gained greater reach in engineering and mathematics. It is vital to solving more complex expressions and equations in a short time. The most...
详细信息
Low back pain is a leading cause of disability globally, is often associated with degenerative lumbar spine conditions. Accurate diagnosis of these conditions is critical but challenging due to the subjective nature o...
详细信息
Automakers from Honda to Lamborghini are incorporating voice interaction technology into their vehicles to improve the user experience and offer value-added services. Speech recognition systems are a key component of ...
详细信息
Cancer remains the leading cause of death worldwide, significantly impacting individuals and healthcare systems alike. In recent decades, skin cancer has surged in prevalence compared to other major cancer types. Vari...
详细信息
The Sign Language Recognition System has been designed to capture video input, process it to detect hand gestures, and translate these gestures into readable text. The project consists of several key components and st...
详细信息
Brain tumors pose a significant threat to human lives and have gained increasing attention as the tenth leading cause of global *** study addresses the pressing issue of brain tumor classification using Magnetic reson...
详细信息
Brain tumors pose a significant threat to human lives and have gained increasing attention as the tenth leading cause of global *** study addresses the pressing issue of brain tumor classification using Magnetic resonance imaging(MRI).It focuses on distinguishing between Low-Grade Gliomas(LGG)and High-Grade Gliomas(HGG).LGGs are benign and typically manageable with surgical resection,while HGGs are malignant and more *** research introduces an innovative custom convolutional neural network(CNN)model,*** stands out as a lightweight CNN model compared to its *** research utilized the BraTS 2020 dataset for its *** with the gradient-boosting algorithm,GliomaCNN has achieved an impressive accuracy of 99.1569%.The model’s interpretability is ensured through SHapley Additive exPlanations(SHAP)and Gradient-weighted Class Activation Mapping(Grad-CAM++).They provide insights into critical decision-making regions for classification *** challenges in identifying tumors in images without visible signs,the model demonstrates remarkable performance in this critical medical application,offering a promising tool for accurate brain tumor diagnosis which paves the way for enhanced early detection and treatment of brain tumors.
Partitional clustering techniques such as K-Means(KM),Fuzzy C-Means(FCM),and Rough K-Means(RKM)are very simple and effective techniques for image ***,because their initial cluster centers are randomly determined,it is...
详细信息
Partitional clustering techniques such as K-Means(KM),Fuzzy C-Means(FCM),and Rough K-Means(RKM)are very simple and effective techniques for image ***,because their initial cluster centers are randomly determined,it is often seen that certain clusters converge to local *** addition to that,pathology image segmentation is also problematic due to uneven lighting,stain,and camera settings during the microscopic image capturing ***,this study proposes an Improved Slime Mould Algorithm(ISMA)based on opposition based learning and differential evolution’s mutation strategy to perform illumination-free White Blood Cell(WBC)*** ISMA helps to overcome the local optima trapping problem of the partitional clustering techniques to some *** paper also performs a depth analysis by considering only color components of many well-known color spaces for clustering to find the effect of illumination over color pathology image *** and visual results encourage the utilization of illumination-free or color component-based clustering approaches for image ***-KM and“ab”color channels of CIELab color space provide best results with above-99%accuracy for only nucleus ***,for entire WBC segmentation,ISMA-KM and the“CbCr”color component of YCbCr color space provide the best results with an accuracy of above 99%.Furthermore,ISMA-KM and ISMA-RKM have the lowest and highest execution times,*** the other hand,ISMA provides competitive outcomes over CEC2019 benchmark test functions compared to recent well-established and efficient Nature-Inspired Optimization Algorithms(NIOAs).
Underwater image enhancement and object detection has great potential for studying underwater environments. It has been utilized in various domains, including image-based underwater monitoring and Autonomous Underwate...
详细信息
Underwater image enhancement and object detection has great potential for studying underwater environments. It has been utilized in various domains, including image-based underwater monitoring and Autonomous Underwater Vehicle (AUV)-driven applications such as underwater terrain surveying. It has been observed that underwater images are not clear due to several factors such as low light, the presence of small particles, different levels of refraction of light, etc. Extracting high-quality features from these images to detect objects is a significant challenging task. To mitigate this challenge, MIRNet and the modified version of YOLOv3 namely Underwater-YOLOv3 (U-YOLOv3) is proposed. The MIRNet is a deep learning-based technology for enhancing underwater images. while using YOLOv3 for underwater object detection it lacks in detection of very small objects and huge-size objects. To address this problem proper anchor box size, quality feature aggregation technique, and during object classification image resizing is required. The proposed U-YOLOv3 has three unique features that help to work with the above specified issue like accurate anchor box determination using the K-means++ clustering algorithm, introduced Spatial Pyramid Pooling (SPP) layer during feature extraction which helps in feature aggregation, and added downsampling and upsampling to improve the detection rate of very large and very small size objects. The size of the anchor box is crucial in detecting objects of different sizes, SPP helps in aggregation of features, while down and upsampling changes sizes of objects during object detection. Precision, recall, F1-score and mAP are used as assessment metrics to assess proposed work. The proposed work compared with SSD, Tiny-YOLO, YOLOv2, YOLOv3, YOLOv4, YOLOv5, KPE-YOLOv5, YOLOv7, YOLOv8 and YOLOv9 single stage object detectors. The experiment on the Brackish and Trash ICRA19 datasets shows that our proposed method enhances the mean average precision for b
As a complex hot problem in the financial field,stock trend forecasting uses a large amount of data and many related indicators;hence it is difficult to obtain sustainable and effective results only by relying on empi...
详细信息
As a complex hot problem in the financial field,stock trend forecasting uses a large amount of data and many related indicators;hence it is difficult to obtain sustainable and effective results only by relying on empirical *** in the field of machine learning have proved that random forest can form better judgements on this kind of problem,and it has an auxiliary role in the prediction of stock *** study uses historical trading data of four listed companies in the USA stock market,and the purpose of this study is to improve the performance of random forest model in medium-and long-term stock trend *** study applies the exponential smoothing method to process the initial data,calculates the relevant technical indicators as the characteristics to be selected,and proposes the D-RF-RS method to optimize random *** the random forest is an ensemble learning model and is closely related to decision tree,D-RF-RS method uses a decision tree to screen the importance of features,and obtains the effective strong feature set of the model as ***,the parameter combination of the model is optimized through random parameter *** experimental results show that the average accuracy of random forest is increased by 0.17 after the above process optimization,which is 0.18 higher than the average accuracy of light gradient boosting machine *** with the performance of the ROC curve and Precision–Recall curve,the stability of the model is also guaranteed,which further demonstrates the advantages of random forest in medium-and long-term trend prediction of the stock market.
The Hamiltonian path/cycle serves as a robust tool for transmitting messages within parallel and distributed systems. However, the prevalent device-intensive nature of these systems often leads to the occurrence of fa...
详细信息
暂无评论