Neural machine translation (NMT) has become an essential tool for breaking down language barriers and facilitating communication between different cultures and communities. However, NMT’s potential impact is limited ...
详细信息
The Internet has been enhanced recently by blockchain and Internet of Things(IoT)*** Internet of Things is a network of various sensor-equipped *** gradually integrates the Internet,sensors,and cloud *** is based on e...
详细信息
The Internet has been enhanced recently by blockchain and Internet of Things(IoT)*** Internet of Things is a network of various sensor-equipped *** gradually integrates the Internet,sensors,and cloud *** is based on encryption algorithms,which are shared database technologies on the *** technology has grown significantly because of its features,such as flexibility,support for integration,anonymity,decentralization,and independent *** nodes in the blockchain network are used to verify online ***,this integration creates scalability,interoperability,and security *** the last decade,several advancements in blockchain technology have drawn attention fromresearch communities and *** technology helps IoT networks become more reliable and enhance security and *** also removes single points of failure and lowers the *** recent years,there has been an increasing amount of literature on IoT and blockchain technology *** paper extensively examines the current state of blockchain technologies,focusing specifically on their integration into the Internet of ***,it highlights the benefits,drawbacks,and opportunities of recent studies on security issues based on blockchain solutions into *** survey examined various research papers fromdifferent types of ***,a review of the other IoT applications has been included,focusing on the security requirements and challenges in IoT-based *** research directions are gathered for the effective integration of Blockchain and IoT.
Jackfruit is the national fruit of Bangladesh, and one of the most consumed fruits in India, Sri Lanka, Philippines, Indonesia, Malaysia, Australia, and many more countries. The every year due to diseases jackfruit pr...
详细信息
In medical question-answering, traditional knowledge triples often fail due to superfluous data and their inability to capture complex relationships between symptoms and treatments across diseases. This limits models&...
详细信息
Learning network dynamics from the empirical structure and spatio-temporal observation data is crucial to revealing the interaction mechanisms of complex networks in a wide range of domains. However,most existing meth...
详细信息
Learning network dynamics from the empirical structure and spatio-temporal observation data is crucial to revealing the interaction mechanisms of complex networks in a wide range of domains. However,most existing methods only aim at learning network dynamic behaviors generated by a specific ordinary differential equation instance, resulting in ineffectiveness for new ones, and generally require dense *** observed data, especially from network emerging dynamics, are usually difficult to obtain, which brings trouble to model learning. Therefore, learning accurate network dynamics with sparse, irregularly-sampled,partial, and noisy observations remains a fundamental challenge. We introduce a new concept of the stochastic skeleton and its neural implementation, i.e., neural ODE processes for network dynamics(NDP4ND), a new class of stochastic processes governed by stochastic data-adaptive network dynamics, to overcome the challenge and learn continuous network dynamics from scarce observations. Intensive experiments conducted on various network dynamics in ecological population evolution, phototaxis movement, brain activity, epidemic spreading, and real-world empirical systems, demonstrate that the proposed method has excellent data adaptability and computational efficiency, and can adapt to unseen network emerging dynamics, producing accurate interpolation and extrapolation with reducing the ratio of required observation data to only about 6% and improving the learning speed for new dynamics by three orders of magnitude.
Effective user authentication is key to ensuring equipment security,data privacy,and personalized services in Internet of Things(IoT)***,conventional mode-based authentication methods(e.g.,passwords and smart cards)ma...
详细信息
Effective user authentication is key to ensuring equipment security,data privacy,and personalized services in Internet of Things(IoT)***,conventional mode-based authentication methods(e.g.,passwords and smart cards)may be vulnerable to a broad range of attacks(e.g.,eavesdropping and side-channel attacks).Hence,there have been attempts to design biometric-based authentication solutions,which rely on physiological and behavioral *** characteristics need continuous monitoring and specific environmental settings,which can be challenging to implement in ***,we can also leverage Artificial Intelligence(AI)in the extraction and classification of physiological characteristics from IoT devices processing to facilitate ***,we review the literature on the use of AI in physiological characteristics recognition pub-lished after *** use the three-layer architecture of the IoT(i.e.,sensing layer,feature layer,and algorithm layer)to guide the discussion of existing approaches and their *** also identify a number of future research opportunities,which will hopefully guide the design of next generation solutions.
作者:
Zjavka, LadislavDepartment of Computer Science
Faculty of Electrical Engineering and Computer Science VŠB-Technical University of Ostrava 17. Listopadu 15/2172 Ostrava Czech Republic
Photovoltaic (PV) power is generated by two common types of solar components that are primarily affected by fluctuations and development in cloud structures as a result of uncertain and chaotic processes. Local PV for...
详细信息
Photovoltaic (PV) power is generated by two common types of solar components that are primarily affected by fluctuations and development in cloud structures as a result of uncertain and chaotic processes. Local PV forecasting is unavoidable in supply and load planning necessary in integration of smart systems into electrical grids. Intra- or day-ahead modelling of weather patterns based on Artificial Intelligence (AI) allows one to refine available 24 h. cloudiness forecast or predict PV production at a particular plant location during the day. AI usually gets an adequate prediction quality in shorter-level horizons, using the historical meteo- and PV record series as compared to Numerical Weather Prediction (NWP) systems. NWP models are produced every 6 h to simulate grid motion of local cloudiness, which is additionally delayed and usually scaled in a rough less operational applicability. Differential Neural Network (DNN) is based on a newly developed neurocomputing strategy that allows the representation of complex weather patterns analogous to NWP. DNN parses the n-variable linear Partial Differential Equation (PDE), which describes the ground-level patterns, into sub-PDE modules of a determined order at each node. Their derivatives are substituted by the Laplace transforms and solved using adapted inverse operations of Operation Calculus (OC). DNN fuses OC mathematics with neural computing in evolution 2-input node structures to form sum modules of selected PDEs added step-by-step to the expanded composite model. The AI multi- 1…9-h and one-stage 24-h models were evolved using spatio-temporal data in the preidentified daily learning sequences according to the applied input–output data delay to predict the Clear Sky Index (CSI). The prediction results of both statistical schemes were evaluated to assess the performance of the AI models. Intraday models obtain slightly better prediction accuracy in average errors compared to those applied in the second-day-ahead
Deep learning has become an important computational paradigm in our daily lives with a wide range of applications,from authentication using facial recognition to autonomous driving in smart vehicles. The quality of th...
Deep learning has become an important computational paradigm in our daily lives with a wide range of applications,from authentication using facial recognition to autonomous driving in smart vehicles. The quality of the deep learning models, i.e., neural architectures with parameters trained over a dataset, is crucial to our daily living and economy.
In open-access and self-organized network like Vehicular Ad Hoc Network (VANETs), privacy and trust are two dimensions of security which need to be enforced for preventing and mitigating the possible compromization of...
详细信息
Reachability query plays a vital role in many graph analysis *** researches proposed many methods to efficiently answer reachability queries between vertex *** many real graphs are labeled graph,it highly demands Labe...
详细信息
Reachability query plays a vital role in many graph analysis *** researches proposed many methods to efficiently answer reachability queries between vertex *** many real graphs are labeled graph,it highly demands Label-Constrained Reachability(LCR)query inwhich constraint includes a set of labels besides vertex *** researches proposed several methods for answering some LCR queries which require appearance of some labels specified in constraints in the *** that constraint may be a label set,query constraint may be ordered labels,namely OLCR(Ordered-Label-Constrained Reachability)queries which retrieve paths matching a sequence of ***,no solutions are available for ***,we propose DHL,a novel bloom filter based indexing technique for answering OLCR *** can be used to check reachability between vertex *** the answers are not no,then constrained DFS is ***,we employ DHL followed by performing constrained DFS to answer OLCR *** show that DHL has a bounded false positive rate,and it's powerful in saving indexing time and *** experiments on 10 real-life graphs and 12 synthetic graphs demonstrate that DHL achieves about 4.8-22.5 times smaller index space and 4.6-114 times less index construction time than two state-of-art techniques for LCR queries,while achieving comparable query response *** results also show that our algorithm can answer OLCR queries effectively.
暂无评论