Autism spectrum disorder (ASD) is characterized by neurological disorders and challenges with interpersonal communication, communication, and schedule behaviour. Early distinguishing proof of ASD is vital to optimize ...
详细信息
The most common preventable cause of blindness in working-age adults worldwide is diabetic retinopathy (DR). Accurate detection of DR by machine learning (ML) approaches is generally limited to pre-selected features. ...
详细信息
Among the most vital organs that protect the body of a human from the external environment is the skin. Early skin illness identification is essential for reducing mortality because it prevents skin cancer, and any ot...
详细信息
This article introduces a novel Multi-agent path planning scheme based on Conflict Based Search (CBS) for heterogeneous holonomic and non-holonomic agents, designated as Heterogeneous CBS (HCBS). The proposed methodol...
详细信息
This work introduces an intrusion detection system (IDS) tailored for industrial internet of things (IIoT) environments based on an optimized convolutional neural network (CNN) model. The model is trained on a dataset...
详细信息
JPEG pictures may now include complicated meta-data using the JPEG Universal Metadata Box Format (JUMBF), which requires tools to recognize different JUMBF kinds inside the image. We offer the JUMBF Type Checker, a so...
详细信息
Algorithms for steganography are methods of hiding data transfers in media *** machine learning architectures have been presented recently to improve stego image identification performance by using spatial information...
详细信息
Algorithms for steganography are methods of hiding data transfers in media *** machine learning architectures have been presented recently to improve stego image identification performance by using spatial information,and these methods have made it feasible to handle a wide range of problems associated with image *** with little information or low payload are used by information embedding methods,but the goal of all contemporary research is to employ high-payload images for *** address the need for both low-and high-payload images,this work provides a machine-learning approach to steganography image classification that uses Curvelet transformation to efficiently extract characteristics from both type of *** Vector Machine(SVM),a commonplace classification technique,has been employed to determine whether the image is a stego or *** Wavelet Obtained Weights(WOW),Spatial Universal Wavelet Relative Distortion(S-UNIWARD),Highly Undetectable Steganography(HUGO),and Minimizing the Power of Optimal Detector(MiPOD)steganography techniques are used in a variety of experimental scenarios to evaluate the performance of the *** WOW at several payloads,the proposed approach proves its classification accuracy of 98.60%.It exhibits its superiority over SOTA methods.
Social media has become an essential forum for people to share their thoughts and sentiments owing to the quick rise in mobile technology. Business and political organizations might benefit from understanding public s...
详细信息
The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in...
详细信息
The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in a varietyof industries, including access control, law enforcement, surveillance, and internet communication. However,the growing usage of face recognition technology has created serious concerns about data monitoring and userprivacy preferences, especially in context-aware systems. In response to these problems, this study provides a novelframework that integrates sophisticated approaches such as Generative Adversarial Networks (GANs), Blockchain,and distributed computing to solve privacy concerns while maintaining exact face recognition. The framework’spainstaking design and execution strive to strike a compromise between precise face recognition and protectingpersonal data integrity in an increasingly interconnected environment. Using cutting-edge tools like Dlib for faceanalysis,Ray Cluster for distributed computing, and Blockchain for decentralized identity verification, the proposedsystem provides scalable and secure facial analysis while protecting user privacy. The study’s contributions includethe creation of a sustainable and scalable solution for privacy-aware face recognition, the implementation of flexibleprivacy computing approaches based on Blockchain networks, and the demonstration of higher performanceover previous methods. Specifically, the proposed StyleGAN model has an outstanding accuracy rate of 93.84%while processing high-resolution images from the CelebA-HQ dataset, beating other evaluated models such asProgressive GAN 90.27%, CycleGAN 89.80%, and MGAN 80.80%. With improvements in accuracy, speed, andprivacy protection, the framework has great promise for practical use in a variety of fields that need face recognitiontechnology. This study paves the way for future research in privacy-enhanced face recognition systems, emphasizingt
We consider the online convex optimization (OCO) problem with quadratic and linear switching cost when at time t only gradient information for functions fτ, τ 16(Lµ+5) for the quadratic switching cost, and also...
详细信息
We consider the online convex optimization (OCO) problem with quadratic and linear switching cost when at time t only gradient information for functions fτ, τ 16(Lµ+5) for the quadratic switching cost, and also show the bound to be order-wise tight in terms of L, µ. In addition, we show that the competitive ratio of any online algorithm is at least max{Ω(L), Ω(pLµ )} when the switching cost is quadratic. For the linear switching cost, the competitive ratio of the OMGD algorithm is shown to depend on both the path length and the squared path length of the problem instance, in addition to L, µ, and is shown to be order-wise, the best competitive ratio any online algorithm can achieve. Copyright is held by author/owner(s).
暂无评论