Due to the importance of Critical Infrastructure(Cl)in a nation's economy,they have been lucrative targets for cyber *** critical infrastructures are usually Cyber-Physical Systems such as power grids,water,and se...
详细信息
Due to the importance of Critical Infrastructure(Cl)in a nation's economy,they have been lucrative targets for cyber *** critical infrastructures are usually Cyber-Physical Systems such as power grids,water,and sewage treatment facilities,oil and gas pipelines,*** recent times,these systems have suffered from cyber attacks numer-ous *** have been developing cyber security solutions for Cls to avoid lasting *** to standard frameworks,cyber security based on identification,protection,detection,response,and recovery are at the core of these *** of an ongoing attack that escapes standard protection such as firewall,anti-virus,and host/network intrusion detection has gained importance as such attacks eventually affect the physical dynamics of the ***,anomaly detection in physical dynamics proves an effective means to implement *** is one example of anomaly detection in the sensor/actuator data,representing such systems physical *** present EPASAD,which improves the detection technique used in PASAD to detect these micro-stealthy attacks,as our experiments show that PASAD's spherical boundary-based detection fails to *** method EPASAD overcomes this by using Ellipsoid boundaries,thereby tightening the boundaries in various dimen-sions,whereas a spherical boundary treats all dimensions *** validate EPASAD using the dataset produced by the TE-process simulator and the C-town *** results show that EPASAD improves PASAD's average recall by 5.8%and 9.5%for the two datasets,respectively.
Cyberbullying,a critical concern for digital safety,necessitates effective linguistic analysis tools that can navigate the complexities of language use in online *** tackle this challenge,our study introduces a new ap...
详细信息
Cyberbullying,a critical concern for digital safety,necessitates effective linguistic analysis tools that can navigate the complexities of language use in online *** tackle this challenge,our study introduces a new approach employing Bidirectional Encoder Representations from the Transformers(BERT)base model(cased),originally pretrained in *** model is uniquely adapted to recognize the intricate nuances of Arabic online communication,a key aspect often overlooked in conventional cyberbullying detection *** model is an end-to-end solution that has been fine-tuned on a diverse dataset of Arabic social media(SM)tweets showing a notable increase in detection accuracy and sensitivity compared to existing *** results on a diverse Arabic dataset collected from the‘X platform’demonstrate a notable increase in detection accuracy and sensitivity compared to existing methods.E-BERT shows a substantial improvement in performance,evidenced by an accuracy of 98.45%,precision of 99.17%,recall of 99.10%,and an F1 score of 99.14%.The proposed E-BERT not only addresses a critical gap in cyberbullying detection in Arabic online forums but also sets a precedent for applying cross-lingual pretrained models in regional language applications,offering a scalable and effective framework for enhancing online safety across Arabic-speaking communities.
Sign language recognition is vital for enhancing communication accessibility among the Deaf and hard-of-hearing *** Japan,approximately 360,000 individualswith hearing and speech disabilities rely on Japanese Sign Lan...
详细信息
Sign language recognition is vital for enhancing communication accessibility among the Deaf and hard-of-hearing *** Japan,approximately 360,000 individualswith hearing and speech disabilities rely on Japanese Sign Language(JSL)for ***,existing JSL recognition systems have faced significant performance limitations due to inherent *** response to these challenges,we present a novel JSL recognition system that employs a strategic fusion approach,combining joint skeleton-based handcrafted features and pixel-based deep learning *** system incorporates two distinct streams:the first stream extracts crucial handcrafted features,emphasizing the capture of hand and body movements within JSL ***,a deep learning-based transfer learning stream captures hierarchical representations of JSL gestures in the second ***,we concatenated the critical information of the first stream and the hierarchy of the second stream features to produce the multiple levels of the fusion features,aiming to create a comprehensive representation of the JSL *** reducing the dimensionality of the feature,a feature selection approach and a kernel-based support vector machine(SVM)were used for the *** assess the effectiveness of our approach,we conducted extensive experiments on our Lab JSL dataset and a publicly available Arabic sign language(ArSL)*** results unequivocally demonstrate that our fusion approach significantly enhances JSL recognition accuracy and robustness compared to individual feature sets or traditional recognition methods.
Heart monitoring improves life ***(ECGs or EKGs)detect heart *** learning algorithms can create a few ECG diagnosis processing *** first method uses raw ECG and time-series *** second method classifies the ECG by pati...
详细信息
Heart monitoring improves life ***(ECGs or EKGs)detect heart *** learning algorithms can create a few ECG diagnosis processing *** first method uses raw ECG and time-series *** second method classifies the ECG by patient *** third technique translates ECG impulses into Q waves,R waves and S waves(QRS)features using richer *** ECG signals vary naturally between humans and activities,we will combine the three feature selection methods to improve classification accuracy and *** using all three approaches have not been examined till *** researchers found that Machine Learning(ML)techniques can improve ECG *** study will compare popular machine learning techniques to evaluate ECG *** algorithms—Support Vector Machine(SVM),Decision Tree,Naive Bayes,and Neural Network—compare categorization *** plus prior knowledge has the highest accuracy(99%)of the four ML *** characteristics failed to identify signals without chaos *** 99.8%classification accuracy,the Decision Tree technique outperformed all previous experiments.
Since most multiobjective optimization problems in real-world applications contain constraints, constraint-handling techniques (CHTs) are necessary for a multiobjective optimizer. However, existing CHTs give no relaxa...
详细信息
In healthcare,the persistent challenge of arrhythmias,a leading cause of global mortality,has sparked extensive research into the automation of detection using machine learning(ML)***,traditional ML and AutoML approac...
详细信息
In healthcare,the persistent challenge of arrhythmias,a leading cause of global mortality,has sparked extensive research into the automation of detection using machine learning(ML)***,traditional ML and AutoML approaches have revealed their limitations,notably regarding feature generalization and automation *** glaring research gap has motivated the development of AutoRhythmAI,an innovative solution that integrates both machine and deep learning to revolutionize the diagnosis of *** approach encompasses two distinct pipelines tailored for binary-class and multi-class arrhythmia detection,effectively bridging the gap between data preprocessing and model *** validate our system,we have rigorously tested AutoRhythmAI using a multimodal dataset,surpassing the accuracy achieved using a single dataset and underscoring the robustness of our *** the first pipeline,we employ signal filtering and ML algorithms for preprocessing,followed by data balancing and split for *** second pipeline is dedicated to feature extraction and classification,utilizing deep learning ***,we introduce the‘RRI-convoluted trans-former model’as a novel addition for binary-class *** ensemble-based approach then amalgamates all models,considering their respective weights,resulting in an optimal model *** our study,the VGGRes Model achieved impressive results in multi-class arrhythmia detection,with an accuracy of 97.39%and firm performance in precision(82.13%),recall(31.91%),and F1-score(82.61%).In the binary-class task,the proposed model achieved an outstanding accuracy of 96.60%.These results highlight the effectiveness of our approach in improving arrhythmia detection,with notably high accuracy and well-balanced performance metrics.
Interpretable visual recognition is essential for decision-making in high-stakes situations. Recent advancements have automated the construction of interpretable models by leveraging Visual Language Models (VLMs) and ...
详细信息
In the present research,we describe a computer-aided detection(CAD)method aimed at automatic fetal head circumference(HC)measurement in 2D ultrasonography pictures during all trimesters of *** HC might be utilized tow...
详细信息
In the present research,we describe a computer-aided detection(CAD)method aimed at automatic fetal head circumference(HC)measurement in 2D ultrasonography pictures during all trimesters of *** HC might be utilized toward determining gestational age and tracking fetal *** automated approach is particularly valuable in low-resource settings where access to trained sonographers is *** CAD system is divided into two steps:to begin,Haar-like characteristics were extracted from ultrasound pictures in order to train a classifier using random forests to find the fetal *** identified the HC using dynamic programming,an elliptical fit,and a Hough *** computer-aided detection(CAD)program was well-trained on 999 pictures(HC18 challenge data source),and then verified on 335 photos from all trimesters in an independent test set.A skilled sonographer and an expert in medicine personally marked the test *** used the crown-rump length(CRL)measurement to calculate the reference gestational age(GA).In the first,second,and third trimesters,the median difference between the standard GA and the GA calculated by the skilled sonographer stayed at 0.7±2.7,0.0±4.5,and 2.0±12.0 days,*** regular duration variance between the baseline GA and the health investigator’s GA remained 1.5±3.0,1.9±5.0,and 4.0±14 a couple of *** mean variance between the standard GA and the CAD system’s GA remained between 0.5 and 5.0,with an additional variation of 2.9 to 12.5 *** outcomes reveal that the computer-aided detection(CAD)program outperforms an expert *** paired with the classifications reported in the literature,the provided system achieves results that are comparable or even *** have assessed and scheduled this computerized approach for HC evaluation,which includes information from all trimesters of gestation.
Human adoption of artificial intelligence(AI)technique is largely hampered because of the increasing complexity and opacity of AI *** AI(XAI)techniques with various methods and tools have been developed to bridge this...
详细信息
Human adoption of artificial intelligence(AI)technique is largely hampered because of the increasing complexity and opacity of AI *** AI(XAI)techniques with various methods and tools have been developed to bridge this gap between high-performance black-box AI models and human ***,the current adoption of XAI technique stil lacks"human-centered"guidance for designing proper solutions to meet different stakeholders'needs in XAI *** first summarize a human-centered demand framework to categorize different stakeholders into five key roles with specific demands by reviewing existing research and then extract six commonly used human-centered XAI evaluation measures which are helpful for validating the effect of *** addition,a taxonomy of XAI methods is developed for visual computing with analysis of method *** clearer human demands and XAI methods in mind,we take a medical image diagnosis scenario as an example to present an overview of how extant XAI approaches for visual computing fulfil stakeholders'human-centered demands in *** we check the availability of open-source XAI tools for stakeholders'*** survey provides further guidance for matching diverse human demands with appropriate XAI methods or tools in specific applications with a summary of main challenges and future work toward human-centered XAI in practice.
Detecting sophisticated cyberattacks,mainly Distributed Denial of Service(DDoS)attacks,with unexpected patterns remains challenging in modern *** detection systems often struggle to mitigate such attacks in convention...
详细信息
Detecting sophisticated cyberattacks,mainly Distributed Denial of Service(DDoS)attacks,with unexpected patterns remains challenging in modern *** detection systems often struggle to mitigate such attacks in conventional and software-defined networking(SDN)*** Machine Learning(ML)models can distinguish between benign and malicious traffic,their limited feature scope hinders the detection of new zero-day or low-rate DDoS attacks requiring frequent *** this paper,we propose a novel DDoS detection framework that combines Machine Learning(ML)and Ensemble Learning(EL)techniques to improve DDoS attack detection and mitigation in SDN *** model leverages the“DDoS SDN”dataset for training and evaluation and employs a dynamic feature selection mechanism that enhances detection accuracy by focusing on the most relevant *** adaptive approach addresses the limitations of conventional ML models and provides more accurate detection of various DDoS attack *** proposed ensemble model introduces an additional layer of detection,increasing reliability through the innovative application of ensemble *** proposed solution significantly enhances the model’s ability to identify and respond to dynamic threats in *** provides a strong foundation for proactive DDoS detection and mitigation,enhancing network defenses against evolving *** comprehensive runtime analysis of Simultaneous Multi-Threading(SMT)on identical configurations shows superior accuracy and efficiency,with significantly reduced computational time,making it ideal for real-time DDoS detection in dynamic,rapidly changing *** results demonstrate that our model achieves outstanding performance,outperforming traditional algorithms with 99%accuracy using Random Forest(RF)and K-Nearest Neighbors(KNN)and 98%accuracy using XGBoost.
暂无评论