The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research...
详细信息
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research is motivated by the pressing demand to enhance transportation mode classification, leveraging the potential of smartphone sensors, notably the accelerometer, magnetometer, and gyroscope. In response to this challenge, we present a novel automated classification model rooted in deep reinforcement learning. Our model stands out for its innovative approach of harnessing enhanced features through artificial neural networks (ANNs) and visualizing the classification task as a structured series of decision-making events. Our model adopts an improved differential evolution (DE) algorithm for initializing weights, coupled with a specialized agent-environment relationship. Every correct classification earns the agent a reward, with additional emphasis on the accurate categorization of less frequent modes through a distinct reward strategy. The Upper Confidence Bound (UCB) technique is used for action selection, promoting deep-seated knowledge, and minimizing reliance on chance. A notable innovation in our work is the introduction of a cluster-centric mutation operation within the DE algorithm. This operation strategically identifies optimal clusters in the current DE population and forges potential solutions using a pioneering update mechanism. When assessed on the extensive HTC dataset, which includes 8311 hours of data gathered from 224 participants over two years. Noteworthy results spotlight an accuracy of 0.88±0.03 and an F-measure of 0.87±0.02, underscoring the efficacy of our approach for large-scale transportation mode classification tasks. This work introduces an innovative strategy in the realm of transportation mode classification, emphasizing both precision and reliability, addressing the pressing need for enhanced classification mechanisms in an eve
In the current era of smart technology, integrating the Internet of Things (IoT) with Artificial Intelligence has revolutionized several fields, including public health and sanitation. The smart lavatory solution prop...
详细信息
The advances from the last few decades in the fields of ML (Machine Learning), DL (Deep Learning), and semantic computing are now changing the shape of the healthcare system. But, unlike physical health problems, diag...
详细信息
Parkinson’s disease is one of the most prevalent and harmful neurodegenerative conditions (PD). Even today, PD diagnosis and monitoring remain pricy and inconvenient processes. With the unprecedented progress of arti...
详细信息
Trademarks are important identifiers for goods and services. They play an increasingly important role in daily life and production. However, with the continuous development of commercial society and the increasing num...
详细信息
In recent years, artificial intelligence has undergone robust development, leading to the emergence of numerous autonomous AI applications. However, a crucial challenge lies in optimizing computational efficiency and ...
详细信息
Background: In this research, a novel algorithm is formulated through the combination of gradient and adaptive thresholding. A set of 5 X 5 convolution kernels were generated to determine the gradients in the four mai...
详细信息
Offensive messages on social media,have recently been frequently used to harass and criticize *** recent studies,many promising algorithms have been developed to identify offensive *** algorithms analyze text in a uni...
详细信息
Offensive messages on social media,have recently been frequently used to harass and criticize *** recent studies,many promising algorithms have been developed to identify offensive *** algorithms analyze text in a unidirectional manner,where a bidirectional method can maximize performance results and capture semantic and contextual information in *** addition,there are many separate models for identifying offensive texts based on monolin-gual and multilingual,but there are a few models that can detect both monolingual and multilingual-based offensive *** this study,a detection system has been developed for both monolingual and multilingual offensive texts by combining deep convolutional neural network and bidirectional encoder representations from transformers(Deep-BERT)to identify offensive posts on social media that are used to harass *** paper explores a variety of ways to deal with multilin-gualism,including collaborative multilingual and translation-based ***,the Deep-BERT is tested on the Bengali and English datasets,including the different bidirectional encoder representations from transformers(BERT)pre-trained word-embedding techniques,and found that the proposed Deep-BERT’s efficacy outperformed all existing offensive text classification algorithms reaching an accuracy of 91.83%.The proposed model is a state-of-the-art model that can classify both monolingual-based and multilingual-based offensive texts.
Object detection and image restoration pose significant challenges in deep learning and computer vision. These tasks are widely employed in various applications, and there is an increasing demand for specialized envir...
详细信息
This systematic literature review delves into the dynamic realm of graphical passwords, focusing on the myriad security attacks they face and the diverse countermeasures devised to mitigate these threats. The core obj...
详细信息
暂无评论