Food safety comment classification represents a specialized task within the realm of text classification. The objective is to efficiently identify a large volume of food safety comments, aiding relevant authorities in...
详细信息
Food safety comment classification represents a specialized task within the realm of text classification. The objective is to efficiently identify a large volume of food safety comments, aiding relevant authorities in timely food analysis and safety alerts. Traditional methods typically employ one-hot encoding for label processing. However, in real-world situations, classified labels often convey valuable semantic information and guidance. This paper introduces an innovative approach to enhance the classification performance of food safety comments by embedding label information. Initially, we extracted generic sentiment pivot words from various classification labels as label description information. Subsequently, we employ a joint embedding approach to integrate this label description information into the text. This process will pool the expressions of the pivot word into the corresponding sentiment labels in the known domains after averaging to get the embedded expression. This aims to acquire highly detailed self-semantic feature vectors and self-knowledge feature vectors that are integrated with labeled descriptive information. Then, feed the semantic representation of comments and the word-embedded representation of labeled description information into a time-step-based multilayer Bi-LSTM and a step-based multilayer CNN, respectively. Ultimately, we concatenate these two feature vectors to facilitate matching, thereby fusing the self-semantic and self-knowledge features of labeled description information to train a classification model for food safety comments. Experimental results on the food safety comment dataset showcase a noteworthy improvement of 1.74% and 1.27% in Macro_Precision and Macro_F1 metrics, respectively, compared to BERT, BERT-RNN, and BERT-CNN. Through extensive ablation experiments and additional studies, our method effectively embeds labeling information, demonstrating a clear advantage over traditional methods in the task of classifying fo
The emergence of software-defined vehicles(SDVs),combined with autonomous driving technologies,has en-abled a new era of vehicle computing(VC),where vehicles serve as a mobile computing ***,the interdisci-plinary comp...
详细信息
The emergence of software-defined vehicles(SDVs),combined with autonomous driving technologies,has en-abled a new era of vehicle computing(VC),where vehicles serve as a mobile computing ***,the interdisci-plinary complexities of automotive systems and diverse technological requirements make developing applications for au-tonomous vehicles *** simplify the development of applications running on SDVs,we propose a comprehen-sive suite of vehicle programming interfaces(VPIs).In this study,we rigorously explore the nuanced requirements for ap-plication development within the realm of VC,centering our analysis on the architectural intricacies of the Open Vehicu-lar Data Analytics Platform(OpenVDAP).We then detail our creation of a comprehensive suite of standardized VPIs,spanning five critical categories:Hardware,Data,Computation,Service,and Management,to address these evolving pro-gramming *** validate the design of VPIs,we conduct experiments using the indoor autonomous vehicle,Ze-bra,and develop the OpenVDAP prototype *** comparing it with the industry-influential AUTOSAR interface,our VPIs demonstrate significant enhancements in programming efficiency,marking an important advancement in the field of SDV application *** also show a case study and evaluate its *** work highlights that VPIs significantly enhance the efficiency of developing applications on *** meet both current and future technologi-cal demands and propel the software-defined automotive industry toward a more interconnected and intelligent future.
In daily life, snail classification is an important mean to ensure food safety and prevent the occurrence of situations that toxic snails are mistakenly consumed. However, the current methods for snail classification ...
详细信息
Perovskite solar cells have shown great potential in the field of underwater solar cells due to their excellent optoelectronic properties;however,their underwater performance and stability still hinder their practical...
详细信息
Perovskite solar cells have shown great potential in the field of underwater solar cells due to their excellent optoelectronic properties;however,their underwater performance and stability still hinder their practical *** this research,a 1H,1H,2H,2H-heptadecafluorodecyl acrylate(HFDA)anti-reflection coating(ARC)was introduced as a high-transparent material for encapsulating perovskite solar modules(PSMs).Optical characterization results revealed that HFDA can effectively reduce reflection of light below 800 nm,aiding in the absorption of light within this wavelength range by underwater solar ***,a remarkable efficiency of 14.65%was achieved even at a water depth of 50 ***,the concentration of Pb^(2+)for HFDA-encapsulated film is significantly reduced from 186 to 16.5 ppb after being immersed in water for 347 ***,the encapsulated PSMs still remained above 80%of their initial efficiency after continuous underwater illumination for 400 ***,being exposed to air,the encapsulated PSMs maintained 94%of their original efficiency after 1000 h light *** highly transparent ARC shows great potentials in enhancing the stability of perovskite devices,applicable not only to underwater cells but also extendable to land-based photovoltaic devices.
Brain-Machine Interfaces (BMIs) offer significant promise for enabling paralyzed individuals to control external devices using their brain signals. One challenge is that during the online Brain Control (BC) process, s...
详细信息
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)ar...
详细信息
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)areas or high reward(quality)*** existing methods perform exploration by only utilizing the novelty of *** novelty and quality in the neighboring area of the current state have not been well utilized to simultaneously guide the agent’s *** address this problem,this paper proposes a novel RL framework,called clustered reinforcement learning(CRL),for efficient exploration in *** adopts clustering to divide the collected states into several clusters,based on which a bonus reward reflecting both novelty and quality in the neighboring area(cluster)of the current state is given to the *** leverages these bonus rewards to guide the agent to perform efficient ***,CRL can be combined with existing exploration strategies to improve their performance,as the bonus rewards employed by these existing exploration strategies solely capture the novelty of *** on four continuous control tasks and six hard-exploration Atari-2600 games show that our method can outperform other state-of-the-art methods to achieve the best performance.
This paper presents a research study on the use of Convolutional Neural Network (CNN), ResNet50, InceptionV3, EfficientNetB0 and NASNetMobile models to efficiently detect brain tumors in order to reduce the time requi...
详细信息
This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking pe...
详细信息
This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking performance while satisfying the state and input constraints, even when system matrices are not available. We first establish a sufficient condition necessary for the existence of a solution pair to the regulator equation and propose a data-based approach to obtain the feedforward and feedback control gains for state feedback control using linear programming. Furthermore, we design a refined Luenberger observer to accurately estimate the system state, while keeping the estimation error within a predefined set. By combining output regulation theory, we develop an output feedback control strategy. The stability of the closed-loop system is rigorously proved to be asymptotically stable by further leveraging the concept of λ-contractive sets.
The proposed work objective is to adapt Online social networking (OSN) is a type of interactive computer-mediated technology that allows people to share information through virtual networks. The microblogging feature ...
详细信息
The proposed work objective is to adapt Online social networking (OSN) is a type of interactive computer-mediated technology that allows people to share information through virtual networks. The microblogging feature of Twitter makes cyberspace prominent (usually accessed via the dark web). The work used the datasets and considered the Scrape Twitter Data (Tweets) in Python using the SN-Scrape module and Twitter 4j API in JAVA to extract social data based on hashtags, which is used to select and access tweets for dataset design from a profile on the Twitter platform based on locations, keywords, and hashtags. The experiments contain two datasets. The first dataset has over 1700 tweets with a focus on location as a keypoint (hacking-for-fun data, cyber-violence data, and vulnerability injector data), whereas the second dataset only comprises 370 tweets with a focus on reposting of tweet status as a keypoint. The method used is focused on a new system model for analysing Twitter data and detecting terrorist attacks. The weights of susceptible keywords are found using a ternary search by the Aho-Corasick algorithm (ACA) for conducting signature and pattern matching. The result represents the ACA used to perform signature matching for assigning weights to extracted words of tweet. ML is used to evaluate Twitter data for classifying patterns and determining the behaviour to identify if a person is a terrorist. SVM (Support Vector Machine) proved to be a more accurate classifier for predicting terrorist attacks compared to other classifiers (KNN- K-Nearest Neighbour and NB-Naïve Bayes). The 1st dataset shows the KNN-Acc. -98.38% and SVM Accuracy as 98.85%, whereas the 2nd dataset shows the KNN-Acc. -91.68% and SVM Accuracy as 93.97%. The proposed work concludes that the generated weights are classified (cyber-violence, vulnerability injector, and hacking-for-fun) for further feature classification. Machine learning (ML) [KNN and SVM] is used to predict the occurrence and
Car accidents have serious consequences including depletion of resources harm to human health and well-being, and social problems. The three primary factors contributing to car accidents are driver error, external fac...
详细信息
暂无评论