Dexterous robot manipulation has shone in complex industrial scenarios, where multiple manipulators, or fingers, cooperate to grasp and manipulate objects. When encountering multi-objective optimization with system co...
详细信息
Dexterous robot manipulation has shone in complex industrial scenarios, where multiple manipulators, or fingers, cooperate to grasp and manipulate objects. When encountering multi-objective optimization with system constraints in such scenarios, model predictive control(MPC) has demonstrated exceptional performance in complex multi-robot manipulation tasks involving multi-objective optimization with system constraints. However, in such scenarios, the substantial computational load required to solve the optimal control problem(OCP) at each triggering instant can lead to significant delays between state sampling and control application, hindering real-time performance. To address these challenges, this paper introduces a novel robust tube-based smooth MPC approach for two fundamental manipulation tasks: reaching a given target and tracking a reference trajectory. By predicting the successor state as the initial condition for imminent OCP solving, we can solve the forthcoming OCP ahead of time, alleviating delay effects. Additionally,we establish an upper bound for linearizing the original nonlinear system, reducing OCP complexity and enhancing response speed. Grounded in tube-based MPC theory, the recursive feasibility and closed-loop stability amidst constraints and disturbances are ensured. Empirical validation is provided through two numerical simulations and two real-world dexterous robot manipulation tasks, which shows that the seamless control input by our methods can effectively enhance the solving efficiency and control performance when compared to conventional time-triggered MPC strategies.
The coronavirus disease 2019 (COVID-19) has posed significant challenges globally, with image classification becoming a critical tool for detecting COVID-19 from chest X-ray and CT images. Convolutional neural network...
详细信息
Recent achievements in deep learning(DL)have demonstrated its potential in predicting traffic *** predictions are beneficial for understanding the situation and making traffic control ***,most state-of-the-art DL mode...
详细信息
Recent achievements in deep learning(DL)have demonstrated its potential in predicting traffic *** predictions are beneficial for understanding the situation and making traffic control ***,most state-of-the-art DL models are consi-dered“black boxes”with little to no transparency of the underlying mechanisms for end *** previous studies attempted to“open the black box”and increase the interpretability of generated ***,handling complex models on large-scale spatiotemporal data and discovering salient spatial and temporal patterns that significantly influence traffic flow remain *** overcome these challenges,we present TrafPS,a visual analytics approach for interpreting traffic prediction outcomes to support decision-making in traffic management and urban *** measurements region SHAP and trajectory SHAP are proposed to quantify the impact of flow patterns on urban traffic at different *** on the task requirements from domain experts,we employed an interactive visual interface for the multi-aspect exploration and analysis of significant flow *** real-world case studies demonstrate the effectiveness of TrafPS in identifying key routes and providing decision-making support for urban planning.
Learning the accurate dynamics of robotic systems directly from the trajectory data is currently a prominent research *** physics-enforced networks,exemplified by Hamiltonian neural networks and Lagrangian neural netw...
详细信息
Learning the accurate dynamics of robotic systems directly from the trajectory data is currently a prominent research *** physics-enforced networks,exemplified by Hamiltonian neural networks and Lagrangian neural networks,demonstrate proficiency in modeling ideal physical systems,but face limitations when applied to systems with uncertain non-conservative dynamics due to the inherent constraints of the conservation laws *** this paper,we present a novel augmented deep Lagrangian network,which seamlessly integrates a deep Lagrangian network with a standard deep *** fusion aims to effectively model uncertainties that surpass the limitations of conventional Lagrangian *** proposed network is applied to learn inverse dynamics model of two multi-degree manipulators including a 6-dof UR-5 robot and a 7-dof SARCOS manipulator under *** experimental results clearly demonstrate that our approach exhibits superior modeling precision and enhanced physical credibility.
The study of gaze tracking is a significant research area in computer vision. It focuses on real-world applications and the interface between humans and computers. Recently, new eye-tracking applications have boosted ...
详细信息
Higher-order patterns reveal sequential multistep state transitions,which are usually superior to origin-destination analyses that depict only first-order geospatial movement *** methods for higher-order movement mode...
详细信息
Higher-order patterns reveal sequential multistep state transitions,which are usually superior to origin-destination analyses that depict only first-order geospatial movement *** methods for higher-order movement modeling first construct a directed acyclic graph(DAG)of movements and then extract higher-order patterns from the ***,DAG-based methods rely heavily on identifying movement keypoints,which are challenging for sparse movements and fail to consider the temporal variants critical for movements in urban *** overcome these limitations,we propose HoLens,a novel approach for modeling and visualizing higher-order movement patterns in the context of an urban *** mainly makes twofold contributions:First,we designed an auto-adaptive movement aggregation algorithm that self-organizes movements hierarchically by considering spatial proximity,contextual information,and tem-poral ***,we developed an interactive visual analytics interface comprising well-established visualization techniques,including the H-Flow for visualizing the higher-order patterns on the map and the higher-order state sequence chart for representing the higher-order state *** real-world case studies demonstrate that the method can adaptively aggregate data and exhibit the process of exploring higher-order patterns using *** also demonstrate the feasibility,usability,and effectiveness of our approach through expert interviews with three domain experts.
This study presents the design of a modified attributed control chart based on a double sampling(DS)np chart applied in combination with generalized multiple dependent state(GMDS)sampling to monitor the mean life of t...
详细信息
This study presents the design of a modified attributed control chart based on a double sampling(DS)np chart applied in combination with generalized multiple dependent state(GMDS)sampling to monitor the mean life of the product based on the time truncated life test employing theWeibull *** control chart developed supports the examination of the mean lifespan variation for a particular product in the process of *** control limit levels are used:the warning control limit,inner control limit,and outer control ***,they enhance the capability for variation detection.A genetic algorithm can be used for optimization during the in-control process,whereby the optimal parameters can be established for the proposed control *** control chart performance is assessed using the average run length,while the influence of the model parameters upon the control chart solution is assessed via sensitivity analysis based on an orthogonal experimental design withmultiple linear regression.A comparative study was conducted based on the out-of-control average run length,in which the developed control chart offered greater sensitivity in the detection of process shifts while making use of smaller samples on average than is the case for existing control ***,to exhibit the utility of the developed control chart,this paper presents its application using simulated data with parameters drawn from the real set of data.
Improving website security to prevent malicious online activities is crucial,and CAPTCHA(Completely Automated Public Turing test to tell computers and Humans Apart)has emerged as a key strategy for distinguishing huma...
详细信息
Improving website security to prevent malicious online activities is crucial,and CAPTCHA(Completely Automated Public Turing test to tell computers and Humans Apart)has emerged as a key strategy for distinguishing human users from automated ***-based CAPTCHAs,designed to be easily decipherable by humans yet challenging for machines,are a common form of this ***,advancements in deep learning have facilitated the creation of models adept at recognizing these text-based CAPTCHAs with surprising *** our comprehensive investigation into CAPTCHA recognition,we have tailored the renowned UpDown image captioning model specifically for this *** approach innovatively combines an encoder to extract both global and local features,significantly boosting the model’s capability to identify complex details within CAPTCHA *** the decoding phase,we have adopted a refined attention mechanism,integrating enhanced visual attention with dual layers of Long Short-Term Memory(LSTM)networks to elevate CAPTCHA recognition *** rigorous testing across four varied datasets,including those from Weibo,BoC,Gregwar,and Captcha 0.3,demonstrates the versatility and effectiveness of our *** results not only highlight the efficiency of our approach but also offer profound insights into its applicability across different CAPTCHA types,contributing to a deeper understanding of CAPTCHA recognition technology.
Deep learning has been successfully used for tasks in the 2D image *** on 3D computer vision and deep geometry learning has also attracted *** achievements have been made regarding feature extraction and discriminatio...
详细信息
Deep learning has been successfully used for tasks in the 2D image *** on 3D computer vision and deep geometry learning has also attracted *** achievements have been made regarding feature extraction and discrimination of 3D *** recent advances in deep generative models such as generative adversarial networks,effective generation of 3D shapes has become an active research *** 2D images with a regular grid structure,3D shapes have various representations,such as voxels,point clouds,meshes,and implicit *** deep learning of 3D shapes,shape representation has to be taken into account as there is no unified representation that can cover all tasks *** such as the representativeness of geometry and topology often largely affect the quality of the generated 3D *** this survey,we comprehensively review works on deep-learning-based 3D shape generation by classifying and discussing them in terms of the underlying shape representation and the architecture of the shape *** advantages and disadvantages of each class are further *** also consider the 3D shape datasets commonly used for shape ***,we present several potential research directions that hopefully can inspire future works on this topic.
Informational resources have significantly expanded as a result of the growth of the internet. Consequently, making personalized suggestions about different types of information, goods, and services is the best strate...
详细信息
暂无评论