咨询与建议

限定检索结果

文献类型

  • 970 篇 会议
  • 521 篇 期刊文献
  • 13 册 图书

馆藏范围

  • 1,504 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,050 篇 工学
    • 795 篇 计算机科学与技术...
    • 643 篇 软件工程
    • 212 篇 控制科学与工程
    • 166 篇 生物工程
    • 128 篇 信息与通信工程
    • 91 篇 生物医学工程(可授...
    • 70 篇 机械工程
    • 65 篇 光学工程
    • 39 篇 电气工程
    • 36 篇 仪器科学与技术
    • 36 篇 土木工程
    • 35 篇 建筑学
    • 26 篇 电子科学与技术(可...
    • 23 篇 化学工程与技术
    • 21 篇 交通运输工程
  • 449 篇 理学
    • 192 篇 生物学
    • 163 篇 数学
    • 125 篇 物理学
    • 56 篇 统计学(可授理学、...
    • 25 篇 化学
    • 19 篇 系统科学
  • 242 篇 管理学
    • 139 篇 图书情报与档案管...
    • 107 篇 管理科学与工程(可...
    • 58 篇 工商管理
  • 103 篇 医学
    • 89 篇 临床医学
    • 61 篇 基础医学(可授医学...
    • 38 篇 药学(可授医学、理...
    • 31 篇 公共卫生与预防医...
  • 73 篇 法学
    • 72 篇 社会学
  • 67 篇 教育学
    • 56 篇 教育学
  • 13 篇 经济学
  • 12 篇 农学
  • 7 篇 文学
  • 4 篇 艺术学
  • 3 篇 军事学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 63 篇 computer science
  • 63 篇 human computer i...
  • 48 篇 user interfaces
  • 47 篇 virtual reality
  • 42 篇 visualization
  • 31 篇 data visualizati...
  • 26 篇 semantics
  • 25 篇 humans
  • 25 篇 students
  • 22 篇 educational inst...
  • 17 篇 three-dimensiona...
  • 17 篇 robots
  • 17 篇 augmented realit...
  • 17 篇 usability
  • 17 篇 games
  • 17 篇 training
  • 16 篇 data mining
  • 16 篇 artificial intel...
  • 16 篇 testing
  • 15 篇 application soft...

机构

  • 80 篇 department of co...
  • 78 篇 moe key lab of a...
  • 58 篇 key laboratory o...
  • 32 篇 human-computer i...
  • 29 篇 key lab. of shan...
  • 18 篇 human-computer i...
  • 15 篇 guangxi key lab ...
  • 13 篇 shenzhen key lab...
  • 12 篇 tsinghua univers...
  • 9 篇 key lab. of shan...
  • 9 篇 human-robot inte...
  • 9 篇 department of co...
  • 9 篇 beijing key lab ...
  • 8 篇 department of co...
  • 8 篇 university of ch...
  • 8 篇 human computer i...
  • 8 篇 human-computer i...
  • 7 篇 microsoft resear...
  • 7 篇 the department o...
  • 7 篇 department of in...

作者

  • 101 篇 zhao hai
  • 44 篇 zhang zhuosheng
  • 41 篇 shneiderman ben
  • 28 篇 bederson benjami...
  • 27 篇 ben shneiderman
  • 27 篇 li zuchao
  • 25 篇 bowman doug a.
  • 25 篇 doug a. bowman
  • 17 篇 yu kai
  • 16 篇 wang rui
  • 14 篇 petrie helen
  • 13 篇 plaisant catheri...
  • 13 篇 utiyama masao
  • 12 篇 b. shneiderman
  • 11 篇 heng pheng-ann
  • 11 篇 chen lu
  • 10 篇 zhou xiang
  • 10 篇 sumita eiichiro
  • 10 篇 north chris
  • 9 篇 huang faliang

语言

  • 1,411 篇 英文
  • 86 篇 其他
  • 6 篇 中文
  • 1 篇 法文
检索条件"机构=Department of Computer Science and Human-Computer Interaction Lab"
1504 条 记 录,以下是571-580 订阅
排序:
Attention Is All You Need for Chinese Word Segmentation
arXiv
收藏 引用
arXiv 2019年
作者: Duan, Sufeng Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University
This paper presents a fast and accurate Chinese word segmentation (CWS) model with only unigram feature and greedy decoding algorithm. Our model uses only attention mechanism for network block building. In detail, we ... 详细信息
来源: 评论
Fribo: A Social Networking Robot for Increasing Social Connectedness through Sharing Daily Home Activities from Living Noise Data
Fribo: A Social Networking Robot for Increasing Social Conne...
收藏 引用
ACM/IEEE International Conference on human-Robot interaction (HRI)
作者: Kwangmin Jeong Jihyun Sung Haesung Lee Aram Kim Hyemi Kim Chanmi Park Youin Jeong JeeHang Lee Jinwoo Kim Human-Computer Interaction Lab Yonsei University Seoul Korea Brain and Machine Intelligence Lab KI for Health Science and Technology KAIST Daejeon Korea
The rapid increase in the number of young adults living alone gives rise to a demand for the resolution of social isolation problems. Social robot technologies play a substantial role for this purpose. However, existi... 详细信息
来源: 评论
OmniTrack: A flexible self-tracking approach leveraging semi-automated tracking
收藏 引用
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2017年 第3期1卷 1-28页
作者: Kim, Young-Ho Jeon, Jae Ho Lee, Bongshin Choe, Eun Kyoung Seo, Jinwook Human-Computer Interaction Lab Dept. of Computer Science and Engineering Seoul National University Seoul Korea Republic of Kakao Corporation Seongnam Gyeonggi-do Korea Republic of Microsoft Research RedmondWA United States Human-Computer Interaction Lab College of Information Studies University of Maryland College ParkMD United States
We now see an increasing number of self-tracking apps and wearable devices. Despite the vast number of available tools, however, it is still challenging for self-trackers to find apps that suit their unique tracking n... 详细信息
来源: 评论
Controllable dual skew divergence loss for neural machine translation
arXiv
收藏 引用
arXiv 2019年
作者: Li, Zuchao Zhao, Hai Wu, Yingting Xiao, Fengshun Jiang, Shu Department of Computer Science and Engineering Shanghai Jiao Tong University China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China
In sequence prediction tasks like neural machine translation, training with cross-entropy loss often leads to models that overgeneralize and plunge into local optima. In this paper, we propose an extended loss functio... 详细信息
来源: 评论
Subword ELMo
arXiv
收藏 引用
arXiv 2019年
作者: Li, Jiangtong Zhao, Hai Li, Zuchao Bi, Wei Liu, Xiaojiang Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Tencent AI Lab Shenzhen China
Embedding from Language Models (ELMo) has shown to be effective for improving many natural language processing (NLP) tasks, and ELMo takes character information to compose word representation to train language models.... 详细信息
来源: 评论
Exploration of Interpretability Techniques for Deep COVID-19 Classification using Chest X-ray Images
arXiv
收藏 引用
arXiv 2020年
作者: Chatterjee, Soumick Saad, Fatima Sarasaen, Chompunuch Ghosh, Suhita Krug, Valerie Khatun, Rupali Mishra, Rahul Desai, Nirja Radeva, Petia Rose, Georg Stober, Sebastian Speck, Oliver Nürnberger, Andreas Data and Knowledge Engineering Group Otto von Guericke University Magdeburg Germany Faculty of Computer Science Otto von Guericke University Magdeburg Germany Genomics Research Centre Human Technopole Italy Institute for Medical Engineering Otto von Guericke University Magdeburg Germany Research Campus STIMULATE Otto von Guericke University Magdeburg Germany Biomedical Magnetic Resonance Otto von Guericke University Magdeburg Germany Artificial Intelligence Lab Otto von Guericke University Magdeburg Germany Department of Mathematics and Computer Science University of Barcelona Barcelona Spain Translational Radiobiology Department of Radiation Oncology Universitätsklinikum Erlangen Erlangen Germany Apollo Hospitals Bilaspur India HCG Cancer Centre Vadodara India Computer Vision Centre Cerdanyola Barcelona Spain Centre for Behavioural Brain Sciences Magdeburg Germany German Centre for Neurodegenerative Diseases Magdeburg Germany
The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread and has challenged different sectors. One of the most effective ways to limit its spread is the early and accurate diagnosing infected... 详细信息
来源: 评论
Probing contextualized sentence representations with visual awareness
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Zhuosheng Wang, Rui Chen, Kehai Utiyama, Masao Sumita, Eiichiro Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
We present a universal framework to model contextualized sentence representations with visual awareness that is motivated to overcome the shortcomings of the multimodal parallel data with manual annotations. For each ... 详细信息
来源: 评论
A Smart Sliding Chinese Pinyin Input Method Editor on Touchscreen
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Zhuosheng Meng, Zhen Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
This paper presents a smart sliding Chinese pinyin Input Method Editor (IME) for touchscreen devices which allows user finger sliding from one key to another on the touchscreen instead of tapping keys one by one, whil... 详细信息
来源: 评论
AGlobal benchmark of algorithms for segmentinglate gadolinium-enhanced cardiac magnetic resonance imaging
arXiv
收藏 引用
arXiv 2020年
作者: Xiong, Zhaohan Xia, Qing Hu, Zhiqiang Huang, Ning Bian, Cheng Zheng, Yefeng Vesal, Sulaiman Ravikumar, Nishant Maier, Andreas Yang, Xin Heng, Pheng-Ann Ni, Dong Li, Caizi Tong, Qianqian Si, Weixin Puybareau, Elodie Khoudli, Younes Géraud, Thierry Chen, Chen Bai, Wenjia Rueckert, Daniel Xu, Lingchao Zhuang, Xiahai Luo, Xinzhe Jia, Shuman Sermesant, Maxime Liu, Yashu Wang, Kuanquan Borra, Davide Masci, Alessandro Corsi, Cristiana De Vente, Coen Veta, Mitko Karim, Rashed Preetha, Chandrakanth Jayachandran Engelhardt, Sandy Qiao, Menyun Wang, Yuanyuan Tao, Qian Nuñez-Garcia, Marta Camara, Oscar Savioli, Nicolo Lamata, Pablo Zhao, Jichao Auckland Bioengineering Institute University of Auckland Auckland New Zealand State Key Lab of Virtual Reality Technology and Systems Beihang University Beijing China School of Electronics Engineering and Computer Science Peking University Beijing China SenseTime Inc Shenzhen China Tencent Jarvis Laboratory Shenzhen China Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Department of Computer Science and Engineering Chinese University of Hong Kong Hong Kong National-Regional Key Technology Engineering Laboratory for Medical Ultrasound School of Biomedical Engineering Shenzhen University Shenzhen China School of Computer Science Wuhan University Wuhan China Shenzhen Key Laboratory of Virtual Reality and Human Interaction Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Epita Research and Development Laboratory Paris France Department of Computing Imperial College London London United Kingdom School of Naval Architecture Shanghai Jiao Tong University Ocean & Civil Engineering Shanghai China School of Data Science Fudan University Shanghai China Epione Research Group Universite Cote d'Azur Inria Sophia Antipolis France Harbin Institute of Technology School of Computer Science and Technology Harbin China Department of Electric University of Bologna Electronic and Information Engineering Cesena Italy Department of Biomedical Engineering Eindhoven University of Technology Eindhoven Netherlands School of Biomedical Engineering and Imaging Sciences Kings College London London United Kingdom Faculty of Electrical Engineering and Information Technology University of Magdeburg Magdeburg Germany Heidelberg University Hospital Germany Biomedical Engineering Center Fudan University Shanghai China Department of Radiology Leiden University Medical Center Leiden Netherlands Department of Information and Communication Technologies Universitat Pompeu Fabra Barcelona Spain D
Segmentation of cardiac images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI)widely used for visualizing diseased cardiacstructures, is a crucial first step for clinical diagnosis and trea... 详细信息
来源: 评论
EEG Data Augmentation for Emotion Recognition Using a Conditional Wasserstein GAN  40
EEG Data Augmentation for Emotion Recognition Using a Condit...
收藏 引用
40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
作者: Luo, Yun Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Brain Science and Technology Research Center Shanghai Jiao Tong University 800 Dong Chuan Road Shanghai200240 China
Due to the lack of electroencephalography (EEG) data, it is hard to build an emotion recognition model with high accuracy from EEG signals using machine learning approach. Inspired by generative adversarial networks (... 详细信息
来源: 评论