The rapid evolution of wireless technologies and the growing complexity of network infrastructures necessitate a paradigm shift in how communication networks are designed,configured,and managed. Recent advancements in...
详细信息
The rapid evolution of wireless technologies and the growing complexity of network infrastructures necessitate a paradigm shift in how communication networks are designed,configured,and managed. Recent advancements in large language models (LLMs) have sparked interest in their potential to revolutionize wireless communication systems. However, existing studies on LLMs for wireless systems are limited to a direct application for telecom language understanding. To empower LLMs with knowledge and expertise in the wireless domain, this paper proposes WirelessLLM, a comprehensive framework for adapting and enhancing LLMs to address the unique challenges and requirements of wireless communication networks. We first identify three foundational principles that underpin WirelessLLM:knowledge alignment, knowledge fusion, and knowledge evolution. Then,we investigate the enabling technologies to build WirelessLLM, including prompt engineering, retrieval augmented generation, tool usage, multi-modal pre-training, and domain-specific fine-tuning. Moreover, we present three case studies to demonstrate the practical applicability and benefits of WirelessLLM for solving typical problems in wireless networks. Finally, we conclude this paper by highlighting key challenges and outlining potential avenues for future research.
The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the...
详细信息
The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the selection of appropriate routing protocols, which is crucial for maintaining high Quality of Service (QoS). The Internet engineering Task Force’s Routing Over Low Power and Lossy Networks (IETF ROLL) working group developed the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) to meet these needs. While the initial RPL standard focused on single-metric route selection, ongoing research explores enhancing RPL by incorporating multiple routing metrics and developing new Objective Functions (OFs). This paper introduces a novel Objective Function (OF), the Reliable and Secure Objective Function (RSOF), designed to enhance the reliability and trustworthiness of parent selection at both the node and link levels within IoT and RPL routing protocols. The RSOF employs an adaptive parent node selection mechanism that incorporates multiple metrics, including Residual Energy (RE), Expected Transmission Count (ETX), Extended RPL Node Trustworthiness (ERNT), and a novel metric that measures node failure rate (NFR). In this mechanism, nodes with a high NFR are excluded from the parent selection process to improve network reliability and stability. The proposed RSOF was evaluated using random and grid topologies in the Cooja Simulator, with tests conducted across small, medium, and large-scale networks to examine the impact of varying node densities. The simulation results indicate a significant improvement in network performance, particularly in terms of average latency, packet acknowledgment ratio (PAR), packet delivery ratio (PDR), and Control Message Overhead (CMO), compared to the standard Minimum Rank with Hysteresis Objective Function (MRHOF).
In recent years,it has been evident that internet is the most effective means of transmitting information in the form of documents,photographs,or videos around the *** purpose of an image compression method is to enco...
详细信息
In recent years,it has been evident that internet is the most effective means of transmitting information in the form of documents,photographs,or videos around the *** purpose of an image compression method is to encode a picture with fewer bits while retaining the decompressed image’s visual *** transmission,this massive data necessitates a lot of channel *** order to overcome this problem,an effective visual compression approach is required to resize this large amount of *** work is based on lossy image compression and is offered for static color *** quantization procedure determines the compressed data quality *** images are converted from RGB to International Commission on Illumination CIE La^(∗)b^(∗);and YCbCr color spaces before being *** the transform domain,the color planes are encoded using the proposed quantization *** improve the efficiency and quality of the compressed image,the standard quantization matrix is updated with the respective image *** used seven discrete orthogonal transforms,including five variations of the Complex Hadamard Transform,Discrete Fourier Transform and Discrete Cosine Transform,as well as thresholding,quantization,de-quantization and inverse discrete orthogonal transforms with CIE La^(∗)b^(∗);and YCbCr to RGB *** to signal noise ratio,signal to noise ratio,picture similarity index and compression ratio are all used to assess the quality of compressed *** the relevant transforms,the image size and bits per pixel are also *** the(n,n)block of transform,adaptive scanning is used to acquire the best feasible compression *** of these characteristics,multimedia systems and services have a wide range of possible applications.
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing ***,the limited energy resources of Sensor Nodes(SNs)a...
详细信息
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing ***,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable *** data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network *** mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring *** unique determination of this study is the shortest path to reach *** the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static *** this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the *** methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide *** addition,a method of using MS scheduling for efficient data collection is *** simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators.
Load balancing and scheduling are essential components of cloud computing that aim to optimize resource allocation and utilization. In a cloud environment, multiple virtual machines and applications compete for shared...
详细信息
Recent advancements in deep neural networks (DNNs) have made them indispensable for numerous commercial applications. These include healthcare systems and self-driving cars. Training DNN models typically demands subst...
详细信息
In autonomous driving, LiDAR sensors are vital for acquiring 3D point clouds, providing reliable geometric information. However, traditional sampling methods of preprocessing often ignore semantic features, leading to...
详细信息
Power load forecasting is essential for optimizing power generation and distribution efficiency. This paper proposes a novel method for daily average load forecasting, referred to as LARSI-TPE-XGB, which integrates th...
详细信息
In the data retrieval process of the Data recommendation system,the matching prediction and similarity identification take place a major role in the *** that,there are several methods to improve the retrieving process...
详细信息
In the data retrieval process of the Data recommendation system,the matching prediction and similarity identification take place a major role in the *** that,there are several methods to improve the retrieving process with improved accuracy and to reduce the searching ***,in the data recommendation system,this type of data searching becomes complex to search for the best matching for given query data and fails in the accuracy of the query recommendation *** improve the performance of data validation,this paper proposed a novel model of data similarity estimation and clustering method to retrieve the relevant data with the best matching in the big data *** this paper advanced model of the Logarithmic Directionality Texture Pattern(LDTP)method with a Metaheuristic Pattern Searching(MPS)system was used to estimate the similarity between the query data in the entire *** overall work was implemented for the application of the data recommendation *** are all indexed and grouped as a cluster to form a paged format of database structure which can reduce the computation time while at the searching ***,with the help of a neural network,the relevancies of feature attributes in the database are predicted,and the matching index was sorted to provide the recommended data for given query *** was achieved by using the Distributional Recurrent Neural Network(DRNN).This is an enhanced model of Neural Network technology to find the relevancy based on the correlation factor of the feature *** training process of the DRNN classifier was carried out by estimating the correlation factor of the attributes of the *** are formed as clusters and paged with proper indexing based on the MPS parameter of similarity *** overall performance of the proposed work can be evaluated by varying the size of the training database by 60%,70%,and 80%.The parameters that are considered for performance analysis are Precision
Currently,edge Artificial Intelligence(AI)systems have significantly facilitated the functionalities of intelligent devices such as smartphones and smart cars,and supported diverse applications and *** fundamental sup...
详细信息
Currently,edge Artificial Intelligence(AI)systems have significantly facilitated the functionalities of intelligent devices such as smartphones and smart cars,and supported diverse applications and *** fundamental supports come from continuous data analysis and computation over these *** the resource constraints of terminal devices,multi-layer edge artificial intelligence systems improve the overall computing power of the system by scheduling computing tasks to edge and cloud servers for *** efforts tend to ignore the nature of strong pipelined characteristics of processing tasks in edge AI systems,such as the encryption,decryption and consensus algorithm supporting the implementation of Blockchain ***,this paper proposes a new pipelined task scheduling algorithm(referred to as PTS-RDQN),which utilizes the system representation ability of deep reinforcement learning and integrates multiple dimensional information to achieve global task ***,a co-optimization strategy based on Rainbow Deep Q-Learning(RainbowDQN)is proposed to allocate computation tasks for mobile devices,edge and cloud servers,which is able to comprehensively consider the balance of task turnaround time,link quality,and other factors,thus effectively improving system performance and user *** addition,a task scheduling strategy based on PTS-RDQN is proposed,which is capable of realizing dynamic task allocation according to device *** results based on many simulation experiments show that the proposed method can effectively improve the resource utilization,and provide an effective task scheduling strategy for the edge computing system with cloud-edge-end architecture.
暂无评论