Efficient highway lighting is crucial for ensuring road safety and reducing energy consumption and costs. Traditional highway lighting systems rely on timers or simple photosensors, leading to inefficient operation by...
详细信息
Smart home automation is protective and preventive measures that are taken to monitor elderly people in a non-intrusive manner using simple and pervasive sensors termed Ambient Assistive Living. The smart home produce...
详细信息
In recent years,the growth of female employees in the commercial market and industries has *** a result,some people think travelling to distant and isolated locations during odd hours generates new threats to women’s...
详细信息
In recent years,the growth of female employees in the commercial market and industries has *** a result,some people think travelling to distant and isolated locations during odd hours generates new threats to women’s *** exponential increase in assaults and attacks on women,on the other hand,is posing a threat to women’s growth,development,and *** the time of the attack,it appears the women were immobilized and needed immediate *** self-defense isn’t sufficient against abuse;a new technological solution is desired and can be used as quickly as hitting a switch or *** proposed Women Safety Gadget(WSG)aims to design a wearable safety device model based on Internet-of-Things(IoT)and Cloud *** is designed in three layers,namely layer-1,having an android app;layer-2,with messaging and location tracking system;and layer-3,which updates information in the cloud *** can detect an unsafe condition by the pressure sensor of the finger on the artificial nail,consequently diffuses a pepper spray,and automatically notifies the saved closest contacts and police station through messaging and location *** has a response time of 1000 ms once the nail is pressed;the average time for pulse rate measure is 0.475 s,and diffusing the pepper spray is 0.2–0.5 *** average activation time is 2.079 s.
Spike camera is a retina-inspired neuromorphic camera which can capture dynamic scenes of high-speed motion by firing a continuous stream of spikes at an extremely high temporal resolution. The limitation in the curre...
详细信息
Optoelectronic synapses that integrate visual perception and pre-processing hold significant potential for neuromorphic vision systems(NVSs). However, due to a lack of wavelength sensitivity, existing NVS mainly foc...
详细信息
Optoelectronic synapses that integrate visual perception and pre-processing hold significant potential for neuromorphic vision systems(NVSs). However, due to a lack of wavelength sensitivity, existing NVS mainly focuses on gray-scale image processing, making it challenging to recognize color images. Additionally, the high power consumption of optoelectronic synapses, compared to the 10 fJ energy consumption of biological synapses, limits their broader application. To address these challenges, an energy-efficient NVS capable of color target recognition in a noisy environment was developed,utilizing a MoS2optoelectronic synapse with wavelength sensitivity. Benefiting from the distinct photon capture capabilities of 450, 535, and 650 nm light, the optoelectronic synapse exhibits wavelength-dependent synaptic plasticity, including excitatory postsynaptic current(EPSC), paired-pulse facilitation(PPF), and long-term plasticity(LTP). These properties can effectively mimic the visual memory and color discrimination functions of the human vision system. Results demonstrate that the NVS, based on MoS2optoelectronic synapses, can eliminate the color noise at the sensor level, increasing color image recognition accuracy from 50% to 90%. Importantly, the optoelectronic synapse operates at a low voltage spike of0.0005 V, consuming only 0.075 fJ per spike, surpassing the energy efficiency of both existing optoelectronic and biological synapses. This ultra-low power, color-sensitive device eliminates the need for color filters and offers great promise for future deployment in filter-free NVS.
Dehazing is a difficult process in computer vision that seeks to improve the clarity and excellence of pictures taken under cloudy, foggy, and rainy circumstances. The Generative Adversarial Network (GAN) has been a v...
详细信息
With the rapid development of Large Language Model (LLM) technology, it has become an indispensable force in biomedical data analysis research. However, biomedical researchers currently have limited knowledge about LL...
详细信息
Many researchers have preferred non-invasive techniques for recognizing the exact type of physiological abnormality in the vocal tract by training machine learning algorithms with feature descriptors extracted from th...
详细信息
Many researchers have preferred non-invasive techniques for recognizing the exact type of physiological abnormality in the vocal tract by training machine learning algorithms with feature descriptors extracted from the voice signal. However, until now, most techniques have been limited to classifying whether a voice is normal or abnormal. It is crucial that the trained Artificial Intelligence (AI) be able to identify the exact pathology associated with voice for implementation in a realistic environment. Another issue is the need to suppress the ambient noise that could be mixed up with the spectra of the voice. Current work proposes a robust, less time-consuming and non-invasive technique for the identification of pathology associated with a laryngeal voice signal. More specifically, a two-stage signal filtering approach that encompasses a score-based geometric approach and a glottal inverse filtering method is applied to the input voice signal. The aim here is to estimate the noise spectra, to regenerate a clean signal and finally to deliver a completely fundamental glottal flow-derived signal. For the next stage, clean glottal derivative signals are used in the formation of a novel fused-scalogram which is currently referred to as the "Combinatorial Transformative Scalogram (CTS)." The CTS is a time-frequency domain plot which is a combination of two time-frequency scalograms. There is a thorough investigation of the performance of the two individual scalograms as well as that of the CTS *** classification metrics are used to investigate performance, which are: sensitivity, mean accuracy, error, precision, false positive rate, specificity, Cohen’s kappa, Matthews Correlation Coefficient, and F1 score. Implementation of the VOice ICar fEDerico II (VOICED) standard database provided the highest mean accuracy of 94.12% with a sensitivity of 93.85% and a specificity of 97.96% against other existing techniques. The current method performed well despite the d
Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people *** to its ability to produce a detailed view of the soft tissues,including the spinal cord,...
详细信息
Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people *** to its ability to produce a detailed view of the soft tissues,including the spinal cord,nerves,intervertebral discs,and vertebrae,Magnetic Resonance Imaging is thought to be the most effective method for imaging the *** semantic segmentation of vertebrae plays a major role in the diagnostic process of lumbar *** is difficult to semantically partition the vertebrae in Magnetic Resonance Images from the surrounding variety of tissues,including muscles,ligaments,and intervertebral discs.U-Net is a powerful deep-learning architecture to handle the challenges of medical image analysis tasks and achieves high segmentation *** work proposes a modified U-Net architecture namely MU-Net,consisting of the Meijering convolutional layer that incorporates the Meijering filter to perform the semantic segmentation of lumbar vertebrae L1 to L5 and sacral vertebra ***-colour mask images were generated and used as ground truth for training the *** work has been carried out on 1312 images expanded from T1-weighted mid-sagittal MRI images of 515 patients in the Lumbar Spine MRI Dataset publicly available from Mendeley *** proposed MU-Net model for the semantic segmentation of the lumbar vertebrae gives better performance with 98.79%of pixel accuracy(PA),98.66%of dice similarity coefficient(DSC),97.36%of Jaccard coefficient,and 92.55%mean Intersection over Union(mean IoU)metrics using the mentioned dataset.
Food wastage stands as a prominent global concern, Many food processing industries have turned to smart automated systems to minimize human error. This study seeks to develop a deep learning-based system focused on ev...
详细信息
暂无评论