The growth of the internet and technology has had a significant effect on social *** information has become an important research topic due to the massive amount of misinformed content on social *** is very easy for a...
详细信息
The growth of the internet and technology has had a significant effect on social *** information has become an important research topic due to the massive amount of misinformed content on social *** is very easy for any user to spread misinformation through the ***,misinformation is a problem for professionals,organizers,and ***,it is essential to observe the credibility and validity of the News articles being shared on social *** core challenge is to distinguish the difference between accurate and false *** studies focus on News article content,such as News titles and descriptions,which has limited their ***,there are two ordinarily agreed-upon features of misinformation:first,the title and text of an article,and second,the user *** the case of the News context,we extracted different user engagements with articles,for example,tweets,i.e.,read-only,user retweets,likes,and *** calculate user credibility and combine it with article content with the user’s *** combining both features,we used three Natural language processing(NLP)feature extraction techniques,i.e.,Term Frequency-Inverse Document Frequency(TF-IDF),Count-Vectorizer(CV),and Hashing-Vectorizer(HV).Then,we applied different machine learning classifiers to classify misinformation as real or ***,we used a Support Vector Machine(SVM),Naive Byes(NB),Random Forest(RF),Decision Tree(DT),Gradient Boosting(GB),and K-Nearest Neighbors(KNN).The proposed method has been tested on a real-world dataset,i.e.,“fakenewsnet”.We refine the fakenewsnet dataset repository according to our required *** dataset contains 23000+articles with millions of user *** highest accuracy score is 93.4%.The proposed model achieves its highest accuracy using count vector features and a random forest *** discoveries confirmed that the proposed classifier would effectively classify misinformat
Privacy-preserving k-nearest neighbor (PPkNN) classification for multiple clouds enables categorizing queried data into a class in keeping with data privacy, where the database and key servers jointly perform cryptogr...
详细信息
In the Internet of Things (IoT), optimizing machine performance through data analysis and improved connectivity is pivotal. Addressing the growing need for environmentally friendly IoT solutions, we focus on "gre...
详细信息
In recent years, underwater robots have been an essential focus of marine science and technology applications. Whether it is the application of military tasks or general civil affairs, underwater robots have played a ...
详细信息
This article introduces a non-invasive pressure therapy method using monaural beats (MB) sonic resonance to promote relaxation and reduce stress. Unlike binaural beats (BB), MB requires no headphones, enhancing access...
详细信息
The sharing of encrypted data in cloud computing is an essential functionality with countless applications in our everyday life. However, the issue of how to securely, efficiently and flexibly share encrypted data in ...
详细信息
Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing,ancient literature research,***,the existing research on sentiment analysis is relatively *** does not eff...
详细信息
Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing,ancient literature research,***,the existing research on sentiment analysis is relatively *** does not effectively solve the problems such as the weak feature extraction ability of poetry text,which leads to the low performance of the model on sentiment analysis for Chinese classical *** this research,we offer the SA-Model,a poetic sentiment analysis ***-Model firstly extracts text vector information and fuses it through Bidirectional encoder representation from transformers-Whole word masking-extension(BERT-wwmext)and Enhanced representation through knowledge integration(ERNIE)to enrich text vector information;Secondly,it incorporates numerous encoders to remove text features at multiple levels,thereby increasing text feature information,improving text semantics accuracy,and enhancing the model’s learning and generalization capabilities;finally,multi-feature fusion poetry sentiment analysis model is *** feasibility and accuracy of the model are validated through the ancient poetry sentiment *** with other baseline models,the experimental findings indicate that SA-Model may increase the accuracy of text semantics and hence improve the capability of poetry sentiment analysis.
As a pivotal enabler of intelligent transportation system(ITS), Internet of vehicles(Io V) has aroused extensive attention from academia and industry. The exponential growth of computation-intensive, latency-sensitive...
详细信息
As a pivotal enabler of intelligent transportation system(ITS), Internet of vehicles(Io V) has aroused extensive attention from academia and industry. The exponential growth of computation-intensive, latency-sensitive,and privacy-aware vehicular applications in Io V result in the transformation from cloud computing to edge computing,which enables tasks to be offloaded to edge nodes(ENs) closer to vehicles for efficient execution. In ITS environment,however, due to dynamic and stochastic computation offloading requests, it is challenging to efficiently orchestrate offloading decisions for application requirements. How to accomplish complex computation offloading of vehicles while ensuring data privacy remains challenging. In this paper, we propose an intelligent computation offloading with privacy protection scheme, named COPP. In particular, an Advanced Encryption Standard-based encryption method is utilized to implement privacy protection. Furthermore, an online offloading scheme is proposed to find optimal offloading policies. Finally, experimental results demonstrate that COPP significantly outperforms benchmark schemes in the performance of both delay and energy consumption.
Handwritten character segmentation plays a pivotal role in the performance of Optical Character Recognition (OCR) systems. This paper introduces an innovative approach to enhancing segmentation accuracy using Region-B...
详细信息
Forest fires pose a serious threat to ecological balance, air quality, and the safety of both humans and wildlife. This paper presents an improved model based on You Only Look Once version 5 (YOLOv5), named YOLO Light...
详细信息
Forest fires pose a serious threat to ecological balance, air quality, and the safety of both humans and wildlife. This paper presents an improved model based on You Only Look Once version 5 (YOLOv5), named YOLO Lightweight Fire Detector (YOLO-LFD), to address the limitations of traditional sensor-based fire detection methods in terms of real-time performance and accuracy. The proposed model is designed to enhance inference speed while maintaining high detection accuracy on resource-constrained devices such as drones and embedded systems. Firstly, we introduce Depthwise Separable Convolutions (DSConv) to reduce the complexity of the feature extraction network. Secondly, we design and implement the Lightweight Faster Implementation of Cross Stage Partial (CSP) Bottleneck with 2 Convolutions (C2f-Light) and the CSP Structure with 3 Compact Inverted Blocks (C3CIB) modules to replace the traditional C3 modules. This optimization enhances deep feature extraction and semantic information processing, thereby significantly increasing inference speed. To enhance the detection capability for small fires, the model employs a Normalized Wasserstein Distance (NWD) loss function, which effectively reduces the missed detection rate and improves the accuracy of detecting small fire sources. Experimental results demonstrate that compared to the baseline YOLOv5s model, the YOLO-LFD model not only increases inference speed by 19.3% but also significantly improves the detection accuracy for small fire targets, with only a 1.6% reduction in overall mean average precision (mAP)@0.5. Through these innovative improvements to YOLOv5s, the YOLO-LFD model achieves a balance between speed and accuracy, making it particularly suitable for real-time detection tasks on mobile and embedded devices.
暂无评论