In the past few years,social media and online news platforms have played an essential role in distributing news content *** of the authenticity of news has become a major *** the COVID-19 outbreak,misinformation and f...
详细信息
In the past few years,social media and online news platforms have played an essential role in distributing news content *** of the authenticity of news has become a major *** the COVID-19 outbreak,misinformation and fake news were major sources of confusion and insecurity among the general *** the first quarter of the year 2020,around 800 people died due to fake news relevant to *** major goal of this research was to discover the best learning model for achieving high accuracy and performance.A novel case study of the Fake News Classification using ELECTRA model,which achieved 85.11%accuracy score,is thus reported in this *** addition to that,a new novel dataset called COVAX-Reality containing COVID-19 vaccine-related news has been *** the COVAX-Reality dataset,the performance of FNEC is compared to several traditional learning models i.e.,Support Vector Machine(SVM),Naive Bayes(NB),Passive Aggressive Classifier(PAC),Long Short-Term Memory(LSTM),Bi-directional LSTM(Bi-LSTM)and Bi-directional Encoder Representations from Transformers(BERT).For the evaluation of FNEC,standard metrics(Precision,Recall,Accuracy,and F1-Score)were utilized.
In scenarios such as vehicle radiation monitoring and unmanned aerial vehicle radiation detection,rapid measurements using a NaI(Tl)detector often result in low photon counts,weak characteristic peaks,and significant ...
详细信息
In scenarios such as vehicle radiation monitoring and unmanned aerial vehicle radiation detection,rapid measurements using a NaI(Tl)detector often result in low photon counts,weak characteristic peaks,and significant statistical *** issues can lead to potential failures in peak-searching-based identification *** address the low precision associated with short-duration measurements of radionuclides,this paper proposes an identification algorithm that leverages heterogeneous spectral transfer to develop a low-count energy spectral identification *** experiments demonstrated that transferring samples from 26 classes of simulated heterogeneous gamma spectra aids in creating a reliable model for measured gamma *** only 10%of target domain samples used for training,the accuracy on real low-count spectral samples was 95.56%.This performance shows a significant improvement over widely employed full-spectrum analysis methods trained on target domain *** proposed method also exhibits strong generalization capabilities,effectively mitigating overfitting issues in low-count energy spectral classification under short-duration measurements.
Background: Proteins act as clotting factors to stop bleeding at the lesion site. This implies that people with hemophilia tend to bleed longer after an injury and are more prone to internal bleeding. Depending on the...
详细信息
In the realm of low-level vision tasks,such as image deraining and dehazing,restoring images distorted by adverse weather conditions remains a significant *** emergence of abundant computational resources has driven t...
详细信息
In the realm of low-level vision tasks,such as image deraining and dehazing,restoring images distorted by adverse weather conditions remains a significant *** emergence of abundant computational resources has driven the dominance of deep Convolutional Neural Networks(CNNs),supplanting traditional methods reliant on prior ***,the evolution of CNN architectures has tended towards increasing complexity,utilizing intricate structures to enhance performance,often at the expense of computational *** response,we propose the Selective Kernel Dense Residual M-shaped Network(SKDRMNet),a flexible solution adept at balancing computational efficiency with network accuracy.A key innovation is the incorporation of an M-shaped hierarchical structure,derived from the U-Net framework as M-Network(M-Net),within which the Selective Kernel Dense Residual Module(SDRM)is introduced to reinforce multi-scale semantic feature *** methodology employs two sampling techniques-bilinear and pixel unshuffled and utilizes a multi-scale feature fusion approach to distil more robust spatial feature map *** the reconstruction phase,feature maps of varying resolutions are seamlessly integrated,and the extracted features are effectively merged using the Selective Kernel Fusion Module(SKFM).Empirical results demonstrate the comprehensive superiority of SKDRMNet across both synthetic and real rain and haze datasets.
Accurate segmentation of brain tumor regions in MRI images is essential for monitoring tumor growth. In view of this, several automated brain tumor segmentation models are proposed. U-Net is one of the most popular mo...
详细信息
Natural language processing (NLP) is an area of research and study that makes it possible for computers to comprehend human language by utilising software engineering concepts from computerscience and artificial inte...
详细信息
There is a growing interest in sustainable ecosystem development, which includes methods such as scientific modeling, environmental assessment, and development forecasting and planning. However, due to insufficient su...
详细信息
The area of brain-computer interface research is widely spreading as it has a diverse array of potential applications. Motor imagery classification is a boon to several people with motor impairment. Low accuracy and d...
详细信息
In this article, we present the first rigorous theoretical analysis of the generalisation performance of a Geometric Semantic Genetic Programming (GSGP) system. More specifically, we consider a hill-climber using the ...
详细信息
A significant obstacle in intelligent transportation systems(ITS)is the capacity to predict traffic *** advancements in deep neural networks have enabled the development of models to represent traffic flow ***,accurat...
详细信息
A significant obstacle in intelligent transportation systems(ITS)is the capacity to predict traffic *** advancements in deep neural networks have enabled the development of models to represent traffic flow ***,accurately predicting traffic flow at the individual road level is extremely difficult due to the complex interplay of spatial and temporal *** paper proposes a technique for predicting short-term traffic flow data using an architecture that utilizes convolutional bidirectional long short-term memory(Conv-BiLSTM)with attention *** studies neglected to include data pertaining to factors such as holidays,weather conditions,and vehicle types,which are interconnected and significantly impact the accuracy of forecast *** addition,this research incorporates recurring monthly periodic pattern data that significantly enhances the accuracy of forecast *** experimental findings demonstrate a performance improvement of 21.68%when incorporating the vehicle type feature.
暂无评论