In the context of security systems,adequate signal coverage is paramount for the communication between security personnel and the accurate positioning of *** studies focus on optimizing base station deployment under t...
详细信息
In the context of security systems,adequate signal coverage is paramount for the communication between security personnel and the accurate positioning of *** studies focus on optimizing base station deployment under the assumption of static obstacles,aiming to maximize the perception coverage of wireless RF(Radio Frequency)signals and reduce positioning blind ***,in practical security systems,obstacles are subject to change,necessitating the consideration of base station deployment in dynamic ***,research in this area still needs to be *** paper proposes a Dynamic Indoor Environment Beacon Deployment Algorithm(DIE-BDA)to address this *** algorithm considers the dynamic alterations in obstacle locations within the designated *** determines the requisite number of base stations,the requisite time,and the area’s practical and overall signal coverage *** experimental results demonstrate that the algorithm can calculate the deployment strategy in 0.12 s following a change in obstacle *** results show that the algorithm in this paper requires 0.12 s to compute the deployment strategy after the positions of obstacles *** 13 base stations,it achieves an effective coverage rate of 93.5%and an overall coverage rate of 97.75%.The algorithm can rapidly compute a revised deployment strategy in response to changes in obstacle positions within security systems,thereby ensuring the efficacy of signal coverage.
In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scal...
详细信息
In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scale object detection algorithm based on an improved YOLOv8 has been proposed. Firstly, a lightweight attention mechanism, Triplet Attention, is introduced to enhance the algorithm’s ability to extract multi-dimensional and multi-scale features, thereby improving the receptive capability of the feature maps. Secondly, the Diverse Branch Block (DBB) is integrated into the CSP Bottleneck with two Convolutions (C2F) module to strengthen the fusion of semantic information across different layers. Thirdly, a new decoupled detection head is proposed by redesigning the original network head based on the Diverse Branch Block module to improve detection accuracy and reduce missed and false detections. Finally, the Minimum Point Distance based Intersection-over-Union (MPDIoU) is used to replace the original YOLOv8 Complete Intersection-over-Union (CIoU) to accelerate the network’s training convergence. Comparative experiments and dehazing pre-processing tests were conducted on the RTTS and VOC-Fog datasets. Compared to the baseline YOLOv8 model, the improved algorithm achieved mean Average Precision (mAP) improvements of 4.6% and 3.8%, respectively. After defogging pre-processing, the mAP increased by 5.3% and 4.4%, respectively. The experimental results demonstrate that the improved algorithm exhibits high practicality and effectiveness in foggy traffic scenarios.
Mental stress has been a major issue among all age groups today. This is more like a stigma in the society where people don't even want to talk about it openly leading to severe health issues. Nowadays, people are...
详细信息
Organ donation and transplantation have long been critical medical procedures, but they face numerous challenges, including scarcity, malpractices, and complex allocation processes. Also, they are vulnerable to the si...
详细信息
Handwriting is a unique and significant human feature that distinguishes them from one *** are many researchers have endeavored to develop writing recognition systems utilizing specific signatures or symbols for perso...
详细信息
Handwriting is a unique and significant human feature that distinguishes them from one *** are many researchers have endeavored to develop writing recognition systems utilizing specific signatures or symbols for person identification through ***,such systems are susceptible to forgery,posing security *** response to these challenges,we propose an innovative hybrid technique for individual identification based on independent handwriting,eliminating the reliance on specific signatures or *** response to these challenges,we propose an innovative hybrid technique for individual identification based on independent handwriting,eliminating the reliance on specific signatures or *** innovative method is intricately designed,encompassing five distinct phases:data collection,preprocessing,feature extraction,significant feature selection,and *** key advancement lies in the creation of a novel dataset specifically tailored for Bengali handwriting(BHW),setting the foundation for our comprehensive ***-preprocessing,we embarked on an exhaustive feature extraction process,encompassing integration with kinematic,statistical,spatial,and composite *** meticulous amalgamation resulted in a robust set of 91 *** enhance the efficiency of our system,we employed an analysis of variance(ANOVA)F test and mutual information scores approach,meticulously selecting the most pertinent *** the identification phase,we harnessed the power of cutting-edge deep learning models,notably the Convolutional Neural Network(CNN)and Bidirectional Long Short-Term Memory(BiLSTM).These models underwent rigorous training and testing to accurately discern individuals based on their handwriting ***,our methodology introduces a groundbreaking hybrid model that synergizes CNN and BiLSTM,capitalizing on fine motor features for enhanced individual ***,our experimental results unde
In the context of an increasingly severe cybersecurity landscape and the growing complexity of offensive and defen-sive techniques,Zero Trust Networks(ZTN)have emerged as a widely recognized *** Trust not only address...
详细信息
In the context of an increasingly severe cybersecurity landscape and the growing complexity of offensive and defen-sive techniques,Zero Trust Networks(ZTN)have emerged as a widely recognized *** Trust not only addresses the shortcomings of traditional perimeter security models but also consistently follows the fundamental principle of“never trust,always verify.”Initially proposed by John Cortez in 2010 and subsequently promoted by Google,the Zero Trust model has become a key approach to addressing the ever-growing security threats in complex network *** paper systematically compares the current mainstream cybersecurity models,thoroughly explores the advantages and limitations of the Zero Trust model,and provides an in-depth review of its components and key ***,it analyzes the latest research achievements in the application of Zero Trust technology across various fields,including network security,6G networks,the Internet of Things(IoT),and cloud computing,in the context of specific use *** paper also discusses the innovative contributions of the Zero Trust model in these fields,the challenges it faces,and proposes corresponding solutions and future research directions.
A fingerprint is a common form of biometric technology used in human identification. The classification of fingerprints is crucial in identification systems because it significantly reduces the time required to identi...
详细信息
The Nong Han Chaloem Phrakiat Lotus Park is a tourist attraction and a source of learning regarding lotus ***,as a training area,it lacks appeal and learning motivation due to its conventional presentation of informat...
详细信息
The Nong Han Chaloem Phrakiat Lotus Park is a tourist attraction and a source of learning regarding lotus ***,as a training area,it lacks appeal and learning motivation due to its conventional presentation of information regarding lotus *** current study introduced the concept of smart learning in this setting to increase interest and motivation for *** neural networks(CNNs)were used for the classification of lotus plant species,for use in the development of a mobile application to display details about each *** scope of the study was to classify 11 species of lotus plants using the proposed CNN model based on different techniques(augmentation,dropout,and L2)and hyper parameters(dropout and epoch number).The expected outcome was to obtain a high-performance CNN model with reduced total parameters compared to using three different pre-trained CNN models(Inception V3,VGG16,and VGG19)as *** performance of the model was presented in terms of accuracy,F1-score,precision,and recall *** results showed that the CNN model with the augmentation,dropout,and L2 techniques at a dropout value of 0.4 and an epoch number of 30 provided the highest testing accuracy of *** best proposed model was more accurate than the pre-trained CNN models,especially compared to Inception *** addition,the number of total parameters was reduced by approximately 1.80–2.19 *** findings demonstrated that the proposed model with a small number of total parameters had a satisfactory degree of classification accuracy.
Tomato leaf diseases significantly impact crop production,necessitating early detection for sustainable *** Learning(DL)has recently shown excellent results in identifying and classifying tomato leaf ***,current DL me...
详细信息
Tomato leaf diseases significantly impact crop production,necessitating early detection for sustainable *** Learning(DL)has recently shown excellent results in identifying and classifying tomato leaf ***,current DL methods often require substantial computational resources,hindering their application on resource-constrained *** propose the Deep Tomato Detection Network(DTomatoDNet),a lightweight DL-based framework comprising 19 learnable layers for efficient tomato leaf disease classification to overcome *** Convn kernels used in the proposed(DTomatoDNet)framework is 1×1,which reduces the number of parameters and helps in more detailed and descriptive feature extraction for *** proposed DTomatoDNet model is trained from scratch to determine the classification success rate.10,000 tomato leaf images(1000 images per class)from the publicly accessible dataset,covering one healthy category and nine disease categories,are utilized in training the proposed DTomatoDNet *** specifically,we classified tomato leaf images into Target Spot(TS),Early Blight(EB),Late Blight(LB),Bacterial Spot(BS),Leaf Mold(LM),Tomato Yellow Leaf Curl Virus(YLCV),Septoria Leaf Spot(SLS),Spider Mites(SM),Tomato Mosaic Virus(MV),and Tomato Healthy(H).The proposed DTomatoDNet approach obtains a classification accuracy of 99.34%,demonstrating excellent accuracy in differentiating between tomato *** model could be used on mobile platforms because it is lightweight and designed with fewer *** farmers can utilize the proposed DTomatoDNet methodology to detect disease more quickly and easily once it has been integrated into mobile platforms by developing a mobile application.
Lightweight cryptography algorithms have concentrated on key generation's randomness, unpredictable nature, and complexity to improve the resistance of ciphers. Therefore, the key is an essential component of ever...
详细信息
暂无评论