Metaverse-based virtual worlds can provide users with an immersive digital experience by utilizing extended reality, IoT, 6G communication, and computing technology. Unlike the multiverse, in which users can access on...
详细信息
Emotion recognition using biological brain signals needs to be reliable to attain effective signal processing and feature extraction techniques. The impact of emotions in interpretations, conversations, and decision-m...
详细信息
Emotion recognition using biological brain signals needs to be reliable to attain effective signal processing and feature extraction techniques. The impact of emotions in interpretations, conversations, and decision-making, has made automatic emotion recognition and examination of a significant feature in the field of psychiatric disease treatment and cure. The problem arises from the limited spatial resolution of EEG recorders. Predetermined quantities of electroencephalography (EEG) channels are used by existing algorithms, which combine several methods to extract significant data. The major intention of this study was to focus on enhancing the efficiency of recognizing emotions using signals from the brain through an experimental, adaptive selective channel selection approach that recognizes that brain function shows distinctive behaviors that vary from one individual to another individual and from one state of emotions to another. We apply a Bernoulli–Laplace-based Bayesian model to map each emotion from the scalp senses to brain sources to resolve this issue of emotion mapping. The standard low-resolution electromagnetic tomography (sLORETA) technique is employed to instantiate the source signals. We employed a progressive graph convolutional neural network (PG-CNN) to identify the sources of the suggested localization model and the emotional EEG as the main graph nodes. In this study, the proposed framework uses a PG-CNN adjacency matrix to express the connectivity between the EEG source signals and the matrix. Research on an EEG dataset of parents of an ASD (autism spectrum disorder) child has been utilized to investigate the ways of parenting of the child's mother and father. We engage with identifying the personality of parental behaviors when regulating the child and supervising his or her daily activities. These recorded datasets incorporated by the proposed method identify five emotions from brain source modeling, which significantly improves the accurac
Accurate and reliable wind power forecasting is of great importance for stable grid operation and advanced dispatch planning. Due to the complex, non-stationary, and highly volatile nature of wind power data, Transfor...
详细信息
Audio Deepfakes, which are highly realistic fake audio recordings driven by AI tools that clone human voices, With Advancements in Text-Based Speech Generation (TTS) and Vocal Conversion (VC) technologies have enabled...
详细信息
Audio Deepfakes, which are highly realistic fake audio recordings driven by AI tools that clone human voices, With Advancements in Text-Based Speech Generation (TTS) and Vocal Conversion (VC) technologies have enabled it easier to create realistic synthetic and imitative speech, making audio Deepfakes a common and potentially dangerous form of deception. Well-known people, like politicians and celebrities, are often targeted. They get tricked into saying controversial things in fake recordings, causing trouble on social media. Even kids’ voices are cloned to scam parents into ransom payments, etc. Therefore, developing effective algorithms to distinguish Deepfake audio from real audio is critical to preventing such frauds. Various Machine learning (ML) and Deep learning (DL) techniques have been created to identify audio Deepfakes. However, most of these solutions are trained on datasets in English, Portuguese, French, and Spanish, expressing concerns regarding their correctness for other languages. The main goal of the research presented in this paper is to evaluate the effectiveness of deep learning neural networks in detecting audio Deepfakes in the Urdu language. Since there’s no suitable dataset of Urdu audio available for this purpose, we created our own dataset (URFV) utilizing both genuine and fake audio recordings. The Urdu Original/real audio recordings were gathered from random youtube podcasts and generated as Deepfake audios using the RVC model. Our dataset has three versions with clips of 5, 10, and 15 seconds. We have built various deep learning neural networks like (RNN+LSTM, CNN+attention, TCN, CNN+RNN) to detect Deepfake audio made through imitation or synthetic techniques. The proposed approach extracts Mel-Frequency-Cepstral-Coefficients (MFCC) features from the audios in the dataset. When tested and evaluated, Our models’ accuracy across datasets was noteworthy. 97.78% (5s), 98.89% (10s), and 98.33% (15s) were remarkable results for the RNN+LSTM
An ultrasonic filter detects signs of malignant tumors by analysing the image’s pixel quality fluctuations caused by a liver *** of malignant growth proximity are identified in an ultrasound filter through image pixe...
详细信息
An ultrasonic filter detects signs of malignant tumors by analysing the image’s pixel quality fluctuations caused by a liver *** of malignant growth proximity are identified in an ultrasound filter through image pixel quality variations from a liver’s *** changes are more common in alcoholic liver conditions than in other etiologies of cirrhosis,suggesting that the cause may be alcohol instead of liver *** Two-Dimensional(2D)ultrasound data sets contain an accuracy rate of 85.9%and a 2D Computed Tomography(CT)data set of 91.02%.The most recent work on designing a Three-Dimensional(3D)ultrasound imaging system in or close to real-time is *** this article,a Deep Learning(DL)model is implemented and modified to fit liver CT segmentation,and a semantic pixel classification of road scenes is *** architecture is called semantic pixel-wise segmentation and comprises a hierarchical link of encoder-decoder layers.A standard data set was used to test the proposed model for liver CT scans and the tumor accuracy in the training *** the normal class,we obtained 100%precision for chronic cirrhosis hepatitis(73%),offset cirrhosis(59.26%),and offensive cirrhosis(91.67%)for chronic hepatitis or cirrhosis(73,0%).The aim is to develop a computer-Aided Detection(CAD)screening tool to detect *** results proved 98.33%exactness,94.59%sensitivity,and 92.11%case with Convolutional Neural Networks(CNN)*** the classifier’s performance did not differentiate so clearly at this level,it was recommended that CNN generally perform better due to the good relationship between Area under the Receiver Operating Characteristics Curve(AUC)and accuracy.
Software-defined networking(SDN) is a trending networking paradigm that focuses on decoupling of the control logic from the data plane. This decoupling brings programmability and flexibility for the network management...
详细信息
Software-defined networking(SDN) is a trending networking paradigm that focuses on decoupling of the control logic from the data plane. This decoupling brings programmability and flexibility for the network management by introducing centralized infrastructure. The complete control logic resides in the controller, and thus it becomes the intellectual and most important entity of the SDN infrastructure. With these advantages, SDN faces several security issues in various SDN layers that may prevent the growth and global adoption of this groundbreaking technology. Control plane exhaustion and switch buffer overflow are examples of such security issues. Distributed denial-of-service(DDoS) attacks are one of the most severe attacks that aim to exhaust the controller’s CPU to discontinue the whole functioning of the SDN network. Hence, it is necessary to design a quick as well as accurate detection scheme to detect the attack traffic at an early stage. In this paper, we present a defense solution to detect and mitigate spoofed flooding DDoS attacks. The proposed defense solution is implemented in the SDN controller. The detection method is based on the idea of an statistical measure — Interquartile Range(IQR). For the mitigation purpose, the existing SDN-in-built capabilities are utilized. In this work, the experiments are performed considering the spoofed SYN flooding attack. The proposed solution is evaluated using different performance parameters, i.e., detection time, detection accuracy, packet_in messages, and CPU utilization. The experimental results reveal that the proposed defense solution detects and mitigates the attack effectively in different attack scenarios.
Multi-user Augmented Reality (MuAR) allows multiple users to interact with shared virtual objects, facilitated by exchanging environment information. Current MuAR systems rely on 3D point clouds for real-world analysi...
详细信息
Machine reading comprehension (MRC) is a fundamental natural language understanding task in natural language processing, which aims to comprehend the text of a given passage and answer questions based on it. Understan...
详细信息
Indonesia has entered a period of demographic bonus. Human resources must be optimized. The number of children who do not in employment, education or training (NEET) in each province needs attention. Several factors t...
详细信息
Banks rely heavily on loans as a primary source of revenue;however, distinguishing deserving applicants who will reliably repay loans presents an ongoing challenge. Conventional selection processes often struggle to i...
详细信息
暂无评论