Steganography is a technique for hiding secret messages while sending and receiving communications through a cover *** ancient times to the present,the security of secret or vital information has always been a signifi...
详细信息
Steganography is a technique for hiding secret messages while sending and receiving communications through a cover *** ancient times to the present,the security of secret or vital information has always been a significant *** development of secure communication methods that keep recipient-only data transmissions secret has always been an area of ***,several approaches,including steganography,have been developed by researchers over time to enable safe data *** this review,we have discussed image steganography based on Discrete Cosine Transform(DCT)algorithm,*** have also discussed image steganography based on multiple hashing algorithms like the Rivest–Shamir–Adleman(RSA)method,the Blowfish technique,and the hash-least significant bit(LSB)*** this review,a novel method of hiding information in images has been developed with minimal variance in image bits,making our method secure and effective.A cryptography mechanism was also used in this *** encoding the data and embedding it into a carry image,this review verifies that it has been ***,embedded text in photos conveys crucial signals about the *** review employs hash table encryption on the message before hiding it within the picture to provide a more secure method of data *** the message is ever intercepted by a third party,there are several ways to stop this operation.A second level of security process implementation involves encrypting and decrypting steganography images using different hashing algorithms.
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inher...
详细信息
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inherent biases and computational burdens, especially when used to relax the rank function, making them less effective and efficient in real-world scenarios. To address these challenges, our research focuses on generalized nonconvex rank regularization problems in robust matrix completion, low-rank representation, and robust matrix regression. We introduce innovative approaches for effective and efficient low-rank matrix learning, grounded in generalized nonconvex rank relaxations inspired by various substitutes for the ?0-norm relaxed functions. These relaxations allow us to more accurately capture low-rank structures. Our optimization strategy employs a nonconvex and multi-variable alternating direction method of multipliers, backed by rigorous theoretical analysis for complexity and *** algorithm iteratively updates blocks of variables, ensuring efficient convergence. Additionally, we incorporate the randomized singular value decomposition technique and/or other acceleration strategies to enhance the computational efficiency of our approach, particularly for large-scale constrained minimization problems. In conclusion, our experimental results across a variety of image vision-related application tasks unequivocally demonstrate the superiority of our proposed methodologies in terms of both efficacy and efficiency when compared to most other related learning methods.
Effective management of electricity consumption (EC) in smart buildings (SBs) is crucial for optimizing operational efficiency, cost savings, and ensuring sustainable resource utilization. Accurate EC prediction enabl...
详细信息
A Brain Tumors are highly dangerous illnesses that significantly reduce the life expectancy of patients. The classification of brain tumors plays a crucial role in clinical diagnosis and effective treatment. The misdi...
详细信息
A Brain Tumors are highly dangerous illnesses that significantly reduce the life expectancy of patients. The classification of brain tumors plays a crucial role in clinical diagnosis and effective treatment. The misdiagnosis of brain tumors will result in wrong medical intercession and reduce chance of survival of patients Precisely diagnosing brain tumors is of utmost importance for devising suitable treatment plans that can effectively cure and improve the quality of life for patients afflicted with this condition. To tackle this challenge, present a framework that harnesses deep convolutional layers to automatically extract crucial and resilient features from the input data. Systems that use computers and with the help of convolutional neural networks have provided huge success stories in early detection of tumors. In our framework, utilize VGG19 model combined with fuzzy logic type-2 where used fuzzy logic type-2 that applied to enhancement the images brain where Type-2 fuzzy logic better handles uncertainty in medical images, improving the interpretability of image enhancement by managing noise and subtle differences with greater precision than Type-1 fuzzy logic for MRI images often contain ambiguous or low-contrast areas where noise, lighting conditions different and greatly improve accuracy. while used the VGG19 architecture to feature extraction and classify Tumor and non- Tumor. This approach enhances the accuracy of tumors classification, aiding in the development of targeted treatment strategies for patients. The method is trained on the Br35H dataset, resulting in a training accuracy of 0.9983 % and Train loss of 0.2118 while the validation accuracy of 0.9953 % validation loss of 0.2264. This demonstrates effective pattern learning and generalization capabilities. The model achieves outstanding accuracy, with a best accuracy for the model of 0.9983 %, While the test accuracy of the model reached of 99 %, and both of sensitivity and specificity at 0.9967
Deep learning technology has extensive application in the classification and recognition of medical images. However, several challenges persist in such application, such as the need for acquiring large-scale labeled d...
详细信息
The evolving field of Alzheimer’s disease(AD)diagnosis has greatly benefited from deep learning models for analyzing brain magnetic resonance(MR)*** study introduces Dynamic GradNet,a novel deep learning model design...
详细信息
The evolving field of Alzheimer’s disease(AD)diagnosis has greatly benefited from deep learning models for analyzing brain magnetic resonance(MR)*** study introduces Dynamic GradNet,a novel deep learning model designed to increase diagnostic accuracy and interpretability for multiclass AD ***,four state-of-the-art convolutional neural network(CNN)architectures,the self-regulated network(RegNet),residual network(ResNet),densely connected convolutional network(DenseNet),and efficient network(EfficientNet),were comprehensively compared via a unified preprocessing pipeline to ensure a fair *** these models,EfficientNet consistently demonstrated superior performance in terms of accuracy,precision,recall,and F1 *** a result,EfficientNetwas selected as the foundation for implementing Dynamic *** GradNet incorporates gradient weighted class activation mapping(GradCAM)into the training process,facilitating dynamic adjustments that focus on critical brain regions associated with early dementia *** adjustments are particularly effective in identifying subtle changes associated with very mild dementia,enabling early diagnosis and *** model was evaluated with the OASIS dataset,which contains greater than 80,000 brain MR images categorized into four distinct stages of AD *** proposed model outperformed the baseline architectures,achieving remarkable generalizability across all *** findingwas especially evident in early-stage dementia detection,where Dynamic GradNet significantly reduced false positives and enhanced classification *** findings highlight the potential of Dynamic GradNet as a robust and scalable approach for AD diagnosis,providing a promising alternative to traditional attention-based *** model’s ability to dynamically adjust spatial focus offers a powerful tool in artificial intelligence(AI)assisted precisionmedicine,particularly in the early det
The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the...
详细信息
The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the selection of appropriate routing protocols, which is crucial for maintaining high Quality of Service (QoS). The Internet Engineering Task Force’s Routing Over Low Power and Lossy Networks (IETF ROLL) working group developed the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) to meet these needs. While the initial RPL standard focused on single-metric route selection, ongoing research explores enhancing RPL by incorporating multiple routing metrics and developing new Objective Functions (OFs). This paper introduces a novel Objective Function (OF), the Reliable and Secure Objective Function (RSOF), designed to enhance the reliability and trustworthiness of parent selection at both the node and link levels within IoT and RPL routing protocols. The RSOF employs an adaptive parent node selection mechanism that incorporates multiple metrics, including Residual Energy (RE), Expected Transmission Count (ETX), Extended RPL Node Trustworthiness (ERNT), and a novel metric that measures node failure rate (NFR). In this mechanism, nodes with a high NFR are excluded from the parent selection process to improve network reliability and stability. The proposed RSOF was evaluated using random and grid topologies in the Cooja Simulator, with tests conducted across small, medium, and large-scale networks to examine the impact of varying node densities. The simulation results indicate a significant improvement in network performance, particularly in terms of average latency, packet acknowledgment ratio (PAR), packet delivery ratio (PDR), and Control Message Overhead (CMO), compared to the standard Minimum Rank with Hysteresis Objective Function (MRHOF).
Effective path planning is crucial for mobile robots to quickly reach rescue destination and complete rescue tasks in a post-disaster *** this study,we investigated the post-disaster rescue path planning problem and m...
详细信息
Effective path planning is crucial for mobile robots to quickly reach rescue destination and complete rescue tasks in a post-disaster *** this study,we investigated the post-disaster rescue path planning problem and modeled this problem as a variant of the travel salesman problem(TSP)with life-strength *** address this problem,we proposed an improved iterated greedy(IIG)***,a push-forward insertion heuristic(PFIH)strategy was employed to generate a high-quality initial ***,a greedy-based insertion strategy was designed and used in the destruction-construction stage to increase the algorithm’s exploration ***,three problem-specific swap operators were developed to improve the algorithm’s exploitation ***,an improved simulated annealing(SA)strategy was used as an acceptance criterion to effectively prevent the algorithm from falling into local *** verify the effectiveness of the proposed algorithm,the Solomon dataset was extended to generate 27 instances for ***,the proposed IIG was compared with five state-of-the-art *** parameter analysiswas conducted using the design of experiments(DOE)Taguchi method,and the effectiveness analysis of each component has been verified one by *** results indicate that IIGoutperforms the compared algorithms in terms of the number of rescue survivors and convergence speed,proving the effectiveness of the proposed algorithm.
Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of ***,both deep learning and ensemble learni...
详细信息
Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of ***,both deep learning and ensemble learning have been used to recognize underlying structures and patterns from high-level features to make predictions/*** the growth in popularity of deep learning and ensemble learning algorithms,they have received significant attention from both scientists and the industrial community due to their superior ability to learn features from big *** deep learning has exhibited significant performance in enhancing learning generalization through the use of multiple deep learning *** ensemble deep learning has large quantities of training parameters,which results in time and space overheads,it performs much better than traditional ensemble *** deep learning has been successfully used in several areas,such as bioinformatics,finance,and health *** this paper,we review and investigate recent ensemble deep learning algorithms and techniques in health care domains,medical imaging,health care data analytics,genomics,diagnosis,disease prevention,and drug *** cover several widely used deep learning algorithms along with their architectures,including deep neural networks(DNNs),convolutional neural networks(CNNs),recurrent neural networks(RNNs),and generative adversarial networks(GANs).Common healthcare tasks,such as medical imaging,electronic health records,and genomics,are also ***,in this review,the challenges inherent in reducing the burden on the healthcare system are discussed and ***,future directions and opportunities for enhancing healthcare model performance are discussed.
Most of the search-based software remodularization(SBSR)approaches designed to address the software remodularization problem(SRP)areutilizing only structural information-based coupling and cohesion quality ***,in prac...
详细信息
Most of the search-based software remodularization(SBSR)approaches designed to address the software remodularization problem(SRP)areutilizing only structural information-based coupling and cohesion quality ***,in practice apart from these quality criteria,there require other aspects of coupling and cohesion quality criteria such as lexical and changed-history in designing the modules of the software ***,consideration of limited aspects of software information in the SBSR may generate a sub-optimal modularization ***,such modularization can be good from the quality metrics perspective but may not be acceptable to the *** produce a remodularization solution acceptable from both quality metrics and developers’perspectives,this paper exploited more dimensions of software information to define the quality criteria as modularization ***,these objectives are simultaneously optimized using a tailored manyobjective artificial bee colony(MaABC)to produce a remodularization *** assess the effectiveness of the proposed approach,we applied it over five software *** obtained remodularization solutions are evaluated with the software quality metrics and developers view of *** demonstrate that the proposed software remodularization is an effective approach for generating good quality modularization solutions.
暂无评论