Agriculture encompasses a way of life and a profession for the general population. Most global traditions and cultures revolve around agriculture. With the help of advanced farming, agriculture may become more profita...
详细信息
This research proposes an Intelligent Decision Support System for Ground-Based Air Defense (GBAD) environments, which consist of Defended Assets (DA) on the ground that require protection from enemy aerial threats. A ...
详细信息
Existing in-memory graph storage systems that rely on DRAM have scalability issues because of the limited capacity and volatile nature of DRAM. The emerging persistent memory (PMEM) offers us a chance to solve these i...
详细信息
Validating assertions before adding them to a knowledge graph is an essential part of its creation and maintenance. Due to the sheer size of knowledge graphs, automatic fact-checking approaches have been developed. Th...
详细信息
When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized *** allows ML models t...
详细信息
When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized *** allows ML models to be trained on local devices without any need for centralized data transfer,thereby reducing both the exposure of sensitive data and the possibility of data interception by malicious third *** paradigm has gained momentum in the last few years,spurred by the plethora of real-world applications that have leveraged its ability to improve the efficiency of distributed learning and to accommodate numerous participants with their data *** virtue of FL,models can be learned from all such distributed data sources while preserving data *** aim of this paper is to provide a practical tutorial on FL,including a short methodology and a systematic analysis of existing software ***,our tutorial provides exemplary cases of study from three complementary perspectives:i)Foundations of FL,describing the main components of FL,from key elements to FL categories;ii)Implementation guidelines and exemplary cases of study,by systematically examining the functionalities provided by existing software frameworks for FL deployment,devising a methodology to design a FL scenario,and providing exemplary cases of study with source code for different ML approaches;and iii)Trends,shortly reviewing a non-exhaustive list of research directions that are under active investigation in the current FL *** ultimate purpose of this work is to establish itself as a referential work for researchers,developers,and data scientists willing to explore the capabilities of FL in practical applications.
In order to maintain sustainable agriculture, it is vital to monitor plant health. Since all species of plants are prone to characteristic diseases, it necessitates regular surveillance to search for any symptoms, whi...
详细信息
In the wake of rapid advancements in artificial intelligence(AI), we stand on the brink of a transformative leap in data systems. The imminent fusion of AI and DB(AI×DB) promises a new generation of data systems,...
详细信息
In the wake of rapid advancements in artificial intelligence(AI), we stand on the brink of a transformative leap in data systems. The imminent fusion of AI and DB(AI×DB) promises a new generation of data systems, which will relieve the burden on end-users across all industry sectors by featuring AI-enhanced functionalities, such as personalized and automated in-database AI-powered analytics, and selfdriving capabilities for improved system performance. In this paper, we explore the evolution of data systems with a focus on deepening the fusion of AI and DB. We present NeurDB, an AI-powered autonomous data system designed to fully embrace AI design in each major system component and provide in-database AI-powered analytics. We outline the conceptual and architectural overview of NeurDB, discuss its design choices and key components, and report its current development and future plan.
Accidents caused by drivers who exhibit unusual behavior are putting road safety at ever-greater risk. When one or more vehicle nodes behave in this way, it can put other nodes in danger and result in potentially cata...
详细信息
The effectiveness of facial expression recognition(FER)algorithms hinges on the model’s quality and the availability of a substantial amount of labeled expression ***,labeling large datasets demands significant human...
详细信息
The effectiveness of facial expression recognition(FER)algorithms hinges on the model’s quality and the availability of a substantial amount of labeled expression ***,labeling large datasets demands significant human,time,and financial *** active learning methods have mitigated the dependency on extensive labeled data,a cold-start problem persists in small to medium-sized expression recognition *** issue arises because the initial labeled data often fails to represent the full spectrum of facial expression *** paper introduces an active learning approach that integrates uncertainty estimation,aiming to improve the precision of facial expression recognition regardless of dataset scale *** method is divided into two primary ***,the model undergoes self-supervised pre-training using contrastive learning and uncertainty estimation to bolster its feature extraction ***,the model is fine-tuned using the prior knowledge obtained from the pre-training phase to significantly improve recognition *** the pretraining phase,the model employs contrastive learning to extract fundamental feature representations from the complete unlabeled *** features are then weighted through a self-attention mechanism with rank ***,data from the low-weighted set is relabeled to further refine the model’s feature extraction *** pre-trained model is then utilized in active learning to select and label information-rich samples more *** results demonstrate that the proposed method significantly outperforms existing approaches,achieving an improvement in recognition accuracy of 5.09%and 3.82%over the best existing active learning methods,Margin,and Least Confidence methods,respectively,and a 1.61%improvement compared to the conventional segmented active learning method.
Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee *** deadly disease is har...
详细信息
Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee *** deadly disease is hard to control because wind,rain,and insects carry *** researchers utilized a deep learning system to identify CBD in coffee cherries at three growth stages and classify photographs of infected and uninfected cherries with 93%accuracy using a random forest *** the dataset is too small and noisy,the algorithm may not learn data patterns and generate accurate *** overcome the existing challenge,early detection of Colletotrichum Kahawae disease in coffee cherries requires automated processes,prompt recognition,and accurate *** proposed methodology selects CBD image datasets through four different stages for training and *** to train a model on datasets of coffee berries,with each image labeled as healthy or *** themodel is trained,SHAP algorithmto figure out which features were essential formaking predictions with the proposed *** of these characteristics were the cherry’s colour,whether it had spots or other damage,and how big the Lesions *** inception is important for classification to virtualize the relationship between the colour of the berry is correlated with the presence of *** evaluate themodel’s performance andmitigate excess fitting,a 10-fold cross-validation approach is *** involves partitioning the dataset into ten subsets,training the model on each subset,and evaluating its *** comparison to other contemporary methodologies,the model put forth achieved an accuracy of 98.56%.
暂无评论