咨询与建议

限定检索结果

文献类型

  • 273 篇 期刊文献
  • 29 篇 会议

馆藏范围

  • 302 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 178 篇 理学
    • 68 篇 生物学
    • 59 篇 数学
    • 35 篇 统计学(可授理学、...
    • 23 篇 物理学
    • 17 篇 化学
    • 15 篇 地球物理学
    • 15 篇 系统科学
  • 174 篇 工学
    • 81 篇 计算机科学与技术...
    • 70 篇 软件工程
    • 43 篇 生物医学工程(可授...
    • 36 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 光学工程
    • 13 篇 信息与通信工程
    • 11 篇 电气工程
    • 10 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 7 篇 仪器科学与技术
    • 5 篇 机械工程
    • 5 篇 环境科学与工程(可...
  • 59 篇 医学
    • 46 篇 临床医学
    • 36 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
    • 16 篇 公共卫生与预防医...
  • 41 篇 管理学
    • 19 篇 图书情报与档案管...
    • 15 篇 管理科学与工程(可...
    • 9 篇 工商管理
    • 7 篇 公共管理
  • 23 篇 农学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 5 篇 法学
    • 5 篇 社会学
  • 5 篇 教育学

主题

  • 7 篇 machine learning
  • 5 篇 deep learning
  • 4 篇 genome-wide asso...
  • 4 篇 diffusion
  • 4 篇 tumors
  • 4 篇 forecasting
  • 3 篇 galaxies
  • 3 篇 genes
  • 3 篇 data mining
  • 3 篇 firing
  • 3 篇 feature extracti...
  • 3 篇 stochastic syste...
  • 3 篇 classification a...
  • 2 篇 eigenvalues and ...
  • 2 篇 random forest
  • 2 篇 vaginal microbio...
  • 2 篇 statistical test...
  • 2 篇 image segmentati...
  • 2 篇 supernovae
  • 2 篇 systematic error...

机构

  • 10 篇 department of in...
  • 8 篇 health managemen...
  • 8 篇 department of tw...
  • 8 篇 department of me...
  • 8 篇 department of co...
  • 7 篇 institute for ca...
  • 7 篇 department of mo...
  • 7 篇 department of bi...
  • 7 篇 wellcome centre ...
  • 7 篇 center for genom...
  • 7 篇 department of me...
  • 6 篇 national institu...
  • 6 篇 department of ph...
  • 6 篇 division of card...
  • 6 篇 royal stoke univ...
  • 6 篇 health systems a...
  • 6 篇 university heart...
  • 6 篇 department of ep...
  • 6 篇 university colle...
  • 6 篇 cambridge univer...

作者

  • 11 篇 mukherjee sayan
  • 8 篇 jasra ajay
  • 7 篇 caroline hayward
  • 7 篇 kari stefansson
  • 6 篇 timothy m frayli...
  • 6 篇 danish saleheen
  • 6 篇 eleftheria zeggi...
  • 6 篇 paffenroth randy
  • 6 篇 mark i mccarthy
  • 6 篇 tamara b harris
  • 6 篇 macarthur daniel...
  • 6 篇 daly mark j.
  • 5 篇 aviad levis
  • 5 篇 vilmantas giedra...
  • 5 篇 alan p. marscher
  • 5 篇 jirong mao
  • 5 篇 andrew t hatters...
  • 5 篇 charles f. gammi...
  • 5 篇 svetlana jorstad
  • 5 篇 nicola marchili

语言

  • 282 篇 英文
  • 16 篇 其他
  • 4 篇 中文
检索条件"机构=Department of Computer Science and Program in Statistical and Data Sciences"
302 条 记 录,以下是1-10 订阅
排序:
MOCBOA:Multi-Objective Chef-Based Optimization Algorithm Using Hybrid Dominance Relations for Solving Engineering Design Problems
收藏 引用
computer Modeling in Engineering & sciences 2025年 第4期143卷 967-1008页
作者: Nour Elhouda Chalabi Abdelouahab Attia Abdulaziz S.Almazyad Ali Wagdy Mohamed Frank Werner Pradeep Jangir Mohammad Shokouhifar Computer Science Department University of M’silaIchebiliaM’sila28000Algeria Computer ScienceDepartment Mohamed El Bachir El IbrahimiUniversity of Bordj BouArreridjBordj BouArreridj34000Algeria Department of Computer Engineering College of Computer and Information SciencesKing Saud UniversityRiyadh11543Saudi Arabia Operations Research Department Faculty of Graduate Studies for Statistical ResearchCairo UniversityGiza12613Egypt Applied Science Research Center Applied Science Private UniversityAmman11931Jordan Faculty of Mathematics Otto-von-Guericke UniversityMagdeburg39016Germany University Centre for Research and Development Chandigarh UniversityMohali140413India Department of Electrical and Computer Engineering Shahid Beheshti UniversityTehran14399Iran DTU AI and Data Science Hub(DAIDASH) Duy Tan UniversityDa Nang550000Vietnam
Multi-objective optimization is critical for problem-solving in engineering,economics,and *** study introduces the Multi-Objective Chef-Based Optimization Algorithm(MOCBOA),an upgraded version of the Chef-Based Optimi... 详细信息
来源: 评论
Optimal Transfer Learning for Missing Not-at-Random Matrix Completion
arXiv
收藏 引用
arXiv 2025年
作者: Jalan, Akhil Jedra, Yassir Mazumdar, Arya Mukherjee, Soumendu Sundar Sarkar, Purnamrita UT Austin United States MIT United States UC San Diego United States Indian Statistical Institute Kolkata India Department of Computer Science LIDS United States Halıcıoğlu Data Science Institute Department of Computer Science and Engineering United States Department of Statistics and Data Sciences
We study transfer learning for matrix completion in a Missing Not-at-Random (MNAR) setting that is motivated by biological problems. The target matrix Q has entire rows and columns missing, making estimation impossibl... 详细信息
来源: 评论
Bayesian Inference for Non-Synchronously Observed Diffusions
arXiv
收藏 引用
arXiv 2025年
作者: Jasra, Ajay Kamatani, Kengo Wu, Amin School of Data Science The Chinese University of Hong Kong Shenzhen Shenzhen China Institute of Statistical Mathematics Tokyo190-0014 Japan Statistics Program Computer Electrical and Mathematical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal23955-6900 Saudi Arabia
We consider the problem of Bayesian inference for bi-variate data observed in time but with observation times which occur non-synchronously. In particular, this occurs in a wide variety of applications in finance, suc... 详细信息
来源: 评论
BENCHMARKING COMMUNITY DRUG RESPONSE PREDICTION MODELS: dataSETS, MODELS, TOOLS, AND METRICS FOR CROSS-dataSET GENERALIZATION ANALYSIS
arXiv
收藏 引用
arXiv 2025年
作者: Partin, Alexander Vasanthakumari, Priyanka Narykov, Oleksandr Wilke, Andreas Koussa, Natasha Jones, Sara E. Zhu, Yitan Overbeek, Jamie C. Jain, Rajeev Fernando, Gayara Demini Sanchez-Villalobos, Cesar Garcia-Cardona, Cristina Mohd-Yusof, Jamaludin Chia, Nicholas Wozniak, Justin M. Ghosh, Souparno Pal, Ranadip Brettin, Thomas S. Weil, M. Ryan Stevens, Rick L. Division of Data Science and Learning Argonne National Laboratory LemontIL United States Frederick National Laboratory for Cancer Research Cancer Data Science Initiatives Cancer Research Technology Program FrederickMD United States Department of Statistics University of Nebraska–Lincoln LincolnNE United States Department of Electrical & Computer Engineering Texas Tech University LubbockTX United States Division of Computer Computational and Statistical Sciences Los Alamos National Laboratory Los AlamosNM United States Department of Computer Science The University of Chicago ChicagoIL United States
Deep learning (DL) and machine learning (ML) models have shown promise in drug response prediction (DRP), yet their ability to generalize across datasets remains an open question, raising concerns about their real-wor... 详细信息
来源: 评论
Biomedical data and AI
收藏 引用
science China Life sciences 2025年 第5期68卷 1536-1540页
作者: Hao Xu Shibo Zhou Zefeng Zhu Vincenzo Vitelli Liangyi Chen Ziwei Dai Ning Yang Luhua Lai Shengyong Yang Sergey Ovchinnikov Zhuoran Qiao Sirui Liu Chen Song Jianfeng Pei Han Wen Jianfeng Feng Yaoyao Zhang Zhengwei Xie Yang-Yu Liu Zhiyuan Li Fulai Jin Hao Li Mohammad Lotfollahi Xuegong Zhang Ge Yang Shihua Zhang Ge Gao Pulin Li Qi Liu Jing-Dong Jackie Han Peking-Tsinghua Center for Life Sciences (CLS) Academy for Advanced Interdisciplinary StudiesPeking University Center for Quantitative Biology (CQB) Academy for Advanced Interdisciplinary StudiesPeking University Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program Academy for Advanced Interdisciplinary StudiesPeking University Department of Physics University of Chicago School of Life Sciences Southern University of Science and Technology Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies College of Chemistry and Molecular Engineering Peking University Department of Biotherapy Cancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan University Department of Biology Massachusetts Institute of Technology Lambic Therapeutics Inc. Changping Laboratory Al for Science Institute Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence Fudan University Department of Obstetrics and Gynecology West China Second University HospitalSichuan University Peking University International Cancer Institute and Peking University-Yunnan Baiyao International Medical Institute and State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking University Health Science CenterPeking University Channing Division of Network Medicine Department of MedicineBrigham and Women's Hospital and Harvard Medical School Center for Artificial Intelligence and Modeling the Carl R.Woese Institute for Genomic BiologyUniversity of Illinois Urbana-Champaign Department of Genetics and Genome Sciences School of Medicine and Department of Computer and Data Sciences and Department of Population and Quantitative Health SciencesCase Western Reserve University Department of Biochemistry and Biophysics University of California Sanger Institute Department of Automation Tsinghua University State Key Laboratory of Multimodal Artificial Intelligence Systems I
The development of artificial intelligence(AI) and the mining of biomedical data complement each other. From the direct use of computer vision results to analyze medical images for disease screening, to now integratin...
来源: 评论
Unbiased Parameter Estimation for Bayesian Inverse Problems
arXiv
收藏 引用
arXiv 2025年
作者: Chada, Neil K. Jasra, Ajay Maama, Mohamed Tempone, Raul Department of Mathematics City University of Hong Kong China School of Data Science The Chinese University of Hong Kong Shenzhen CN Shenzhen China Applied Mathematics and Computational Science Program Computer Electrical and Mathematical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal23955-6900 Saudi Arabia
In this paper we consider the estimation of unknown parameters in Bayesian inverse problems. In most cases of practical interest, there are several barriers to performing such estimation, This includes a numerical app... 详细信息
来源: 评论
Structural phase transitions between layered Indium Selenide for integrated photonic memory
arXiv
收藏 引用
arXiv 2025年
作者: Li, Tiantian Wang, Yong Li, Wei Mao, Dun Benmore, Chris J. Evangelista, Igor Xing, Huadan Li, Qiu Wang, Feifan Sivaraman, Ganesh Janotti, Anderson Law, Stephanie Gu, Tingyi Department of Electrical and Computer Engineering University of Delaware NewarkDE19716 United States Department of Materials Science and Engineering University of Delaware NewarkDE19716 United States Los Alamos National Laboratory Computer Computational and Statistical Sciences Division Los AlamosNM87545 United States X-ray Science Division Argonne National Laboratory LemontIL60439 United States Data Science and Learning Division Argonne National Laboratory LemontIL60439 United States
The primary mechanism of optical memoristive devices relies on the phase transitions between amorphous-crystalline states. The slow or energy hungry amorphous-crystalline transitions in optical phase-change materials ... 详细信息
来源: 评论
Improved LSTM hyperparameters alongside sentiment walk-forward validation for time series prediction
收藏 引用
Journal of Open Innovation: Technology, Market, and Complexity 2025年 第1期11卷
作者: Wahyuddin, Eko Putra Caraka, Rezzy Eko Kurniawan, Robert Caesarendra, Wahyu Gio, Prana Ugiana Pardamean, Bens Department of Statistical Computing Politeknik Statistika STIS Jakarta 13330 Indonesia Statistics Indonesia (BPS) Jl. Dr Sutomo 6-8 Jakarta Indonesia School of Economics and Business Telkom University Bandung 40257 Indonesia Research Center for Data and Information Sciences Research Organization for Electronics and Informatics National Research and Innovation Agency (BRIN) Bandung 40135 Indonesia Faculty of Integrated Technologies Universiti Brunei Darussalam Gadong BE1410 Brunei Darussalam Department of Mathematics Universitas Sumatera Utara Medan 20155 Indonesia Bioinformatics and Data Science Research Centre Bina Nusantara University DKI Jakarta 11480 Indonesia Computer Science Department BINUS Graduate Program Master of Computer Science Program Bina Nusantara University DKI Jakarta 11480 Indonesia
This study aims to address the common issue of biased estimation errors in time series modeling by analyzing the error in locating ideal hyperparameters and defining appropriate validation methods. Specifically, it fo... 详细信息
来源: 评论
GAITGen: Disentangled Motion-Pathology Impaired Gait Generative Model – Bringing Motion Generation to the Clinical Domain
arXiv
收藏 引用
arXiv 2025年
作者: Adeli, Vida Mehraban, Soroush Mirmehdi, Majid Whone, Alan Filtjens, Benjamin Dadashzadeh, Amirhossein Fasano, Alfonso Iaboni, Andrea Taati, Babak University of Toronto Computer Science Department Canada Vector Institute Canada KITE Research Institute UHN Canada University of Toronto Institute of Biomedical Engineering Canada University of Bristol School of Computer Science United Kingdom University of Bristol Translational Health Science United Kingdom University of Toronto Data Sciences Institute Canada University of Toronto Department of Medicine Division of Neurology Canada Krembil Research Institute UHN Canada Edmond J. Safra Program in Parkinson’s Disease UHN Canada University of Toronto Department of Psychiatry Canada Centre for Mental Health UHN Canada
Gait analysis is crucial for the diagnosis and monitoring of movement disorders like Parkinson’s Disease. While computer vision models have shown potential for objectively evaluating parkinsonian gait, their effectiv... 详细信息
来源: 评论
A Consensus Privacy Metrics Framework for Synthetic data
arXiv
收藏 引用
arXiv 2025年
作者: Pilgram, Lisa Dankar, Fida K. Drechsler, Jörg Elliot, Mark Domingo-Ferrer, Josep Francis, Paul Kantarcioglu, Murat Kong, Linglong Malin, Bradley Muralidhar, Krishnamurty Myles, Puja Prasser, Fabian Raisaro, Jean Louis Yan, Chao El Emam, Khaled School of Epidemiology and Public Health University of Ottawa ON Canada CHEO Research Institute ON Canada Department of Nephrology and Medical Intensive Care Charité – Universitätsmedizin Berlin Berlin Germany Department for Statistical Methods Institute for Employment Research Nuernberg Germany Institute for Statistics Ludwig-Maximilians-Universität Munich Germany Joint Program in Survey Methodology University of Maryland United States The Cathie Marsh Institute Research School of Social Sciences University of Manchester Manchester United Kingdom Department of Computer Engineering and Mathematics Universitat Rovira i Virgili Catalonia Tarragona Spain Max Planck Institute for Software Systems Germany Department of Computer Science Virginia Tech United States Department of Mathematical and Statistical Sciences University of Alberta Alberta Canada Department of Biomedical Informatics Vanderbilt University Medical Center NashvilleTN United States Department of Biostatistics Vanderbilt University Medical Center NashvilleTN United States Department of Computer Science Vanderbilt University NashvilleTN United States Department of Marketing and Supply Chain Management University of Oklahoma Oklahoma United States Medicines and Healthcare products Regulatory Agency London United Kingdom Berlin Institute of Health at Charité Universitätsmedizin Berlin Medical Informatics Group Berlin Germany Biomedical Data Science Center University Hospital Lausanne Lausanne Switzerland
Synthetic data generation is one approach for sharing individual-level data. However, to meet legislative requirements, it is necessary to demonstrate that the individuals’ privacy is adequately protected. There is n... 详细信息
来源: 评论