咨询与建议

限定检索结果

文献类型

  • 270 篇 期刊文献
  • 30 篇 会议

馆藏范围

  • 300 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 173 篇 理学
    • 63 篇 生物学
    • 60 篇 数学
    • 36 篇 统计学(可授理学、...
    • 22 篇 物理学
    • 15 篇 地球物理学
    • 15 篇 系统科学
    • 13 篇 化学
  • 171 篇 工学
    • 80 篇 计算机科学与技术...
    • 70 篇 软件工程
    • 41 篇 生物医学工程(可授...
    • 35 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 光学工程
    • 13 篇 信息与通信工程
    • 11 篇 电气工程
    • 10 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 7 篇 仪器科学与技术
    • 5 篇 机械工程
    • 5 篇 环境科学与工程(可...
  • 56 篇 医学
    • 45 篇 临床医学
    • 34 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
    • 17 篇 公共卫生与预防医...
  • 41 篇 管理学
    • 19 篇 图书情报与档案管...
    • 15 篇 管理科学与工程(可...
    • 9 篇 工商管理
    • 7 篇 公共管理
  • 23 篇 农学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 教育学

主题

  • 6 篇 machine learning
  • 4 篇 deep learning
  • 4 篇 genome-wide asso...
  • 4 篇 diffusion
  • 4 篇 tumors
  • 4 篇 forecasting
  • 3 篇 galaxies
  • 3 篇 genes
  • 3 篇 data mining
  • 3 篇 firing
  • 3 篇 feature extracti...
  • 3 篇 stochastic syste...
  • 3 篇 classification a...
  • 2 篇 eigenvalues and ...
  • 2 篇 random forest
  • 2 篇 vaginal microbio...
  • 2 篇 statistical test...
  • 2 篇 image segmentati...
  • 2 篇 supernovae
  • 2 篇 systematic error...

机构

  • 10 篇 department of in...
  • 8 篇 health managemen...
  • 8 篇 department of me...
  • 8 篇 department of co...
  • 7 篇 institute for ca...
  • 7 篇 department of mo...
  • 7 篇 department of tw...
  • 7 篇 wellcome centre ...
  • 7 篇 department of me...
  • 6 篇 national institu...
  • 6 篇 department of ph...
  • 6 篇 division of card...
  • 6 篇 royal stoke univ...
  • 6 篇 department of bi...
  • 6 篇 health systems a...
  • 6 篇 university heart...
  • 6 篇 department of ep...
  • 6 篇 university colle...
  • 6 篇 cambridge univer...
  • 6 篇 university of gl...

作者

  • 11 篇 mukherjee sayan
  • 8 篇 jasra ajay
  • 7 篇 caroline hayward
  • 7 篇 kari stefansson
  • 6 篇 timothy m frayli...
  • 6 篇 danish saleheen
  • 6 篇 eleftheria zeggi...
  • 6 篇 paffenroth randy
  • 6 篇 mark i mccarthy
  • 6 篇 tamara b harris
  • 6 篇 macarthur daniel...
  • 6 篇 daly mark j.
  • 5 篇 aviad levis
  • 5 篇 vilmantas giedra...
  • 5 篇 alan p. marscher
  • 5 篇 jirong mao
  • 5 篇 andrew t hatters...
  • 5 篇 charles f. gammi...
  • 5 篇 svetlana jorstad
  • 5 篇 nicola marchili

语言

  • 280 篇 英文
  • 16 篇 其他
  • 4 篇 中文
检索条件"机构=Department of Computer Science and Program in Statistical and Data Sciences"
300 条 记 录,以下是21-30 订阅
排序:
UAV-Aided data Acquisition Using Gaining-Sharing Knowledge Optimization Algorithm
收藏 引用
computers, Materials & Continua 2022年 第9期72卷 5999-6013页
作者: Rania M Tawfik Hazem A.A.Nomer M.Saeed Darweesh Ali Wagdy Mohamed Hassan Mostafa Wireless Intelligent Networks Center(WINC) School of Engineering and Applied SciencesNile UniversityGiza12677Egypt School of Information Technology and Computer Science(ITCS) Nile UniversityGiza12677Egypt Operations Research Department Faculty of Graduate Studies for Statistical ResearchCairo UniversityGiza12613Egypt Department of Mathematics and Actuarial Science School of Science and EngineeringThe American University in CairoEgypt Electronics and Communications Engineering Department Cairo UniversityEgypt University of Science and Technology Nanotechnology and Nanoelectronics ProgramZewal City of Science and TechnologyOctober Gardens6th of OctoberGiza12578Egypt
Unmanned Aerial Vehicles(UAVs)provide a reliable and energyefficient solution for data collection from the Narrowband Internet of Things(NB-IoT)***,the UAV’s deployment optimization,including locations of the UAV’s ... 详细信息
来源: 评论
Blockchain-Based System for Secure and Efficient Cross-Border Remittances: A Potential Alternative to SWIFT
收藏 引用
Journal of Software Engineering and Applications 2024年 第8期17卷 664-712页
作者: Omoshola S. Owolabi Emmanuel Hinneh Prince C. Uche Nathaniel T. Adeniken Jennifer A. Ohaegbulem Samuel Attakorah Oluwabukola G. Emi-Johnson Chinaza S. Belolisa Harold Nwariaku Department of Data Science Carolina University Winston Salem NC USA Patterson School of Business Carolina University Winston Salem NC USA Department of Statistical Sciences Wake Forest University Winston Salem NC USA Department of Computer Science Fisk University Nashville TN USA Harold & Co Procurement and Supply Chain Consulting Lagos Nigeria
This paper proposes a blockchain-based system as a secure, efficient, and cost-effective alternative to SWIFT for cross-border remittances. The current SWIFT system faces challenges, including slow settlement times, h... 详细信息
来源: 评论
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI  41
Position: Bayesian Deep Learning is Needed in the Age of Lar...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论
BENCHMARKING COMMUNITY DRUG RESPONSE PREDICTION MODELS: dataSETS, MODELS, TOOLS, AND METRICS FOR CROSS-dataSET GENERALIZATION ANALYSIS
arXiv
收藏 引用
arXiv 2025年
作者: Partin, Alexander Vasanthakumari, Priyanka Narykov, Oleksandr Wilke, Andreas Koussa, Natasha Jones, Sara E. Zhu, Yitan Overbeek, Jamie C. Jain, Rajeev Fernando, Gayara Demini Sanchez-Villalobos, Cesar Garcia-Cardona, Cristina Mohd-Yusof, Jamaludin Chia, Nicholas Wozniak, Justin M. Ghosh, Souparno Pal, Ranadip Brettin, Thomas S. Weil, M. Ryan Stevens, Rick L. Division of Data Science and Learning Argonne National Laboratory LemontIL United States Frederick National Laboratory for Cancer Research Cancer Data Science Initiatives Cancer Research Technology Program FrederickMD United States Department of Statistics University of Nebraska–Lincoln LincolnNE United States Department of Electrical & Computer Engineering Texas Tech University LubbockTX United States Division of Computer Computational and Statistical Sciences Los Alamos National Laboratory Los AlamosNM United States Department of Computer Science The University of Chicago ChicagoIL United States
Deep learning (DL) and machine learning (ML) models have shown promise in drug response prediction (DRP), yet their ability to generalize across datasets remains an open question, raising concerns about their real-wor... 详细信息
来源: 评论
Antithetic Multilevel Methods for Elliptic and Hypo-Elliptic Diffusions with Applications
arXiv
收藏 引用
arXiv 2024年
作者: Iguchi, Yuga Jasra, Ajay Maama, Mohamed Beskos, Alexandros Department of Statistical Science University College London LondonWC1E 6BT United Kingdom School of Data Science The Chinese University of Hong Kong Shenzhen China Applied Mathematics and Computational Science Program Computer Electrical and Mathematical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal23955-6900 Saudi Arabia
In this paper we present a new antithetic multilevel Monte Carlo (MLMC) method for the estimation of expectations with respect to laws of diffusion processes that can be elliptic or hypo-elliptic. In particular, we co... 详细信息
来源: 评论
HOW MANY DIRECTIONS DETERMINE A SHAPE AND OTHER SUFFICIENCY RESULTS FOR TWO TOPOLOGICAL TRANSFORMS
收藏 引用
Transactions of the American Mathematical Society Series B 2022年 第32期9卷 1006-1043页
作者: Curry, Justin Mukherjee, Sayan Turner, Katharine Department of Mathematics and Statistics University at Albany SUNY Albany 12222 NY United States Departments of Statistical Science Mathematics Computer Science Biostatistics & Bioinformatics Duke University Durham 27708 NC United States Center for Scalable Data Analytics and Artificial Intelligence Universität Leipzig Germany Max Planck Institute for Mathematics in the Natural Sciences Leipzig Germany Mathematical Sciences Institute Australian National University Canberra Australia
In this paper we consider two topological transforms that are pop-ular in applied topology: the Persistent Homology Transform and the Euler Characteristic Transform. Both of these transforms are of interest for their ... 详细信息
来源: 评论
Multilevel Monte Carlo for a class of Partially Observed Processes in Neuroscience
arXiv
收藏 引用
arXiv 2023年
作者: Maama, Mohamed Jasra, Ajay Kamatani, Kengo Applied Mathematics and Computational Science Program Computer Electrical and Mathematical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal23955-6900 Saudi Arabia School of Data Science The Chinese University of Hong Kong CN Shenzhen China Institute of Statistical Mathematics Tokyo190-0014 Japan
In this paper we consider Bayesian parameter inference associated to a class of partially observed stochastic differential equations (SDE) driven by jump processes. Such type of models can be routinely found in applic... 详细信息
来源: 评论
Stochastic gradient descent estimation of generalized matrix factorization models with application to single-cell RNA sequencing data
arXiv
收藏 引用
arXiv 2024年
作者: Castiglione, Cristian Segers, Alexandre Clement, Lieven Risso, Davide Bocconi Institute for Data Science and Analytics Bocconi University Via Röntgen 1 Milan20136 Italy Department of Applied Mathematics Computer Science and Statistics Ghent University Krijgslaan 281-S9 Ghent9000 Belgium Department of Statistical Sciences University of Padova Via Cesare Battisti 241 Padova35121 Italy
Single–cell RNA sequencing allows the quantitation of gene expression at the individual cell level, enabling the study of cellular heterogeneity and gene expression dynamics. Dimensionality reduction is a common prep... 详细信息
来源: 评论
Modeling of Measurement Error in Financial Returns data
arXiv
收藏 引用
arXiv 2024年
作者: Jasra, Ajay Maama, Mohamed Mijatović, Aleksandar School of Data Science The Chinese University of Hong Kong Shenzhen China Applied Mathematics and Computational Science Program Computer Electrical and Mathematical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal23955-6900 Saudi Arabia Department of Statistics University of Warwick United Kingdom
In this paper we consider the modeling of measurement error for fund returns data. In particular, given access to a time-series of discretely observed log-returns and the associated maximum over the observation period... 详细信息
来源: 评论
Biomedical data and AI
收藏 引用
science China Life sciences 2025年 第5期68卷 1536-1540页
作者: Hao Xu Shibo Zhou Zefeng Zhu Vincenzo Vitelli Liangyi Chen Ziwei Dai Ning Yang Luhua Lai Shengyong Yang Sergey Ovchinnikov Zhuoran Qiao Sirui Liu Chen Song Jianfeng Pei Han Wen Jianfeng Feng Yaoyao Zhang Zhengwei Xie Yang-Yu Liu Zhiyuan Li Fulai Jin Hao Li Mohammad Lotfollahi Xuegong Zhang Ge Yang Shihua Zhang Ge Gao Pulin Li Qi Liu Jing-Dong Jackie Han Peking-Tsinghua Center for Life Sciences (CLS) Academy for Advanced Interdisciplinary StudiesPeking University Center for Quantitative Biology (CQB) Academy for Advanced Interdisciplinary StudiesPeking University Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program Academy for Advanced Interdisciplinary StudiesPeking University Department of Physics University of Chicago School of Life Sciences Southern University of Science and Technology Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies College of Chemistry and Molecular Engineering Peking University Department of Biotherapy Cancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan University Department of Biology Massachusetts Institute of Technology Lambic Therapeutics Inc. Changping Laboratory Al for Science Institute Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence Fudan University Department of Obstetrics and Gynecology West China Second University HospitalSichuan University Peking University International Cancer Institute and Peking University-Yunnan Baiyao International Medical Institute and State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking University Health Science CenterPeking University Channing Division of Network Medicine Department of MedicineBrigham and Women's Hospital and Harvard Medical School Center for Artificial Intelligence and Modeling the Carl R.Woese Institute for Genomic BiologyUniversity of Illinois Urbana-Champaign Department of Genetics and Genome Sciences School of Medicine and Department of Computer and Data Sciences and Department of Population and Quantitative Health SciencesCase Western Reserve University Department of Biochemistry and Biophysics University of California Sanger Institute Department of Automation Tsinghua University State Key Laboratory of Multimodal Artificial Intelligence Systems I
The development of artificial intelligence(AI) and the mining of biomedical data complement each other. From the direct use of computer vision results to analyze medical images for disease screening, to now integratin...
来源: 评论