咨询与建议

限定检索结果

文献类型

  • 273 篇 期刊文献
  • 29 篇 会议

馆藏范围

  • 302 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 178 篇 理学
    • 68 篇 生物学
    • 59 篇 数学
    • 35 篇 统计学(可授理学、...
    • 23 篇 物理学
    • 17 篇 化学
    • 15 篇 地球物理学
    • 15 篇 系统科学
  • 174 篇 工学
    • 81 篇 计算机科学与技术...
    • 70 篇 软件工程
    • 43 篇 生物医学工程(可授...
    • 36 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 光学工程
    • 13 篇 信息与通信工程
    • 11 篇 电气工程
    • 10 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 7 篇 仪器科学与技术
    • 5 篇 机械工程
    • 5 篇 环境科学与工程(可...
  • 59 篇 医学
    • 46 篇 临床医学
    • 36 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
    • 16 篇 公共卫生与预防医...
  • 41 篇 管理学
    • 19 篇 图书情报与档案管...
    • 15 篇 管理科学与工程(可...
    • 9 篇 工商管理
    • 7 篇 公共管理
  • 23 篇 农学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 5 篇 法学
    • 5 篇 社会学
  • 5 篇 教育学

主题

  • 7 篇 machine learning
  • 5 篇 deep learning
  • 4 篇 genome-wide asso...
  • 4 篇 diffusion
  • 4 篇 tumors
  • 4 篇 forecasting
  • 3 篇 galaxies
  • 3 篇 genes
  • 3 篇 data mining
  • 3 篇 firing
  • 3 篇 feature extracti...
  • 3 篇 stochastic syste...
  • 3 篇 classification a...
  • 2 篇 eigenvalues and ...
  • 2 篇 random forest
  • 2 篇 vaginal microbio...
  • 2 篇 statistical test...
  • 2 篇 image segmentati...
  • 2 篇 supernovae
  • 2 篇 systematic error...

机构

  • 10 篇 department of in...
  • 8 篇 health managemen...
  • 8 篇 department of tw...
  • 8 篇 department of me...
  • 8 篇 department of co...
  • 7 篇 institute for ca...
  • 7 篇 department of mo...
  • 7 篇 department of bi...
  • 7 篇 wellcome centre ...
  • 7 篇 center for genom...
  • 7 篇 department of me...
  • 6 篇 national institu...
  • 6 篇 department of ph...
  • 6 篇 division of card...
  • 6 篇 royal stoke univ...
  • 6 篇 health systems a...
  • 6 篇 university heart...
  • 6 篇 department of ep...
  • 6 篇 university colle...
  • 6 篇 cambridge univer...

作者

  • 11 篇 mukherjee sayan
  • 8 篇 jasra ajay
  • 7 篇 caroline hayward
  • 7 篇 kari stefansson
  • 6 篇 timothy m frayli...
  • 6 篇 danish saleheen
  • 6 篇 eleftheria zeggi...
  • 6 篇 paffenroth randy
  • 6 篇 mark i mccarthy
  • 6 篇 tamara b harris
  • 6 篇 macarthur daniel...
  • 6 篇 daly mark j.
  • 5 篇 aviad levis
  • 5 篇 vilmantas giedra...
  • 5 篇 alan p. marscher
  • 5 篇 jirong mao
  • 5 篇 andrew t hatters...
  • 5 篇 charles f. gammi...
  • 5 篇 svetlana jorstad
  • 5 篇 nicola marchili

语言

  • 282 篇 英文
  • 16 篇 其他
  • 4 篇 中文
检索条件"机构=Department of Computer Science and Program in Statistical and Data Sciences"
302 条 记 录,以下是71-80 订阅
排序:
The X factor: A Robust and powerful approach to x-chromosome-inclusive whole-genome association studies
arXiv
收藏 引用
arXiv 2018年
作者: Chen, Bo Craiu, Radu V. Strug, Lisa J. Sun, Lei Department of Statistical Sciences University of Toronto ON Canada Dalla Lana School of Public Health University of Toronto ON Canada Department of Computer Science University of Toronto ON Canada Program in Genetics and Genome Biology The Hospital for Sick Children Ontario Canada
The X-chromosome is often excluded from genome-wide association studies because of analytical challenges. Some of the problems, such as the random, skewed or no X-inactivation model uncertainty, have been investigated... 详细信息
来源: 评论
Bounding the sum of the largest signless Laplacian eigenvalues of a graph
arXiv
收藏 引用
arXiv 2022年
作者: Abiad, Aida de Lima, Leonardo Kalantarzadeh, Sina Mohammadi, Mona Oliveira, Carla Department of Mathematics and Computer Science Eindhoven University of Technology Netherlands Department of Mathematics: Analysis Logic and Discrete Mathematics Ghent University Belgium Department of Mathematics and Data Science Vrije Universiteit Brussel Belgium Graduate Program in Mathematics Federal University of Parana Curitiba Brazil Sharif University of Technology Iran Department of Mathematical National School of Statistical Sciences Rio de Janeiro Brazil
We show several sharp upper and lower bounds for the sum of the largest eigenvalues of the signless Laplacian matrix. These bounds improve and extend previously known bounds. © 2022, CC0.
来源: 评论
Robust PCA for anomaly detection in cyber networks
arXiv
收藏 引用
arXiv 2018年
作者: Paffenroth, Randy Kay, Kathleen Servi, Les Department of Mathematical Sciences Department of Computer Science Data Science Program Worcester Polytechnic Institute WorcesterMA01609 United States Department of Mathematical Sciences Worcester Polytechnic Institute WorcesterMA01609 United States Mitre Corporation BedfordMA01730 United States
This paper uses network packet capture data to demonstrate how Robust Principal Component Analysis (RPCA) can be used in a new way to detect anomalies which serve as cyber-network attack indicators. The approach requi... 详细信息
来源: 评论
Facilitating team-based data science: Lessons learned from the DSC-WAV project
arXiv
收藏 引用
arXiv 2021年
作者: Legacy, Chelsey Zieffler, Andrew Baumer, Benjamin S. Barr, Valerie Horton, Nicholas J. Department of Educational Psychology University of Minnesota MinneapolisMN55455 United States Program in Statistical & Data Sciences Smith College NorthamptonMA01063 United States Department of Computer Science Mount Holyoke College South HadleyMA01075 United States Department of Mathematics and Statistics Amherst College Amherst MA01002 United States
While coursework provides undergraduate data science students with some relevant analytic skills, many are not given the rich experiences with data and computing they need to be successful in the workplace. Additional... 详细信息
来源: 评论
Antithetic Multilevel Methods for Elliptic and Hypo-Elliptic Diffusions with Applications
arXiv
收藏 引用
arXiv 2024年
作者: Iguchi, Yuga Jasra, Ajay Maama, Mohamed Beskos, Alexandros Department of Statistical Science University College London LondonWC1E 6BT United Kingdom School of Data Science The Chinese University of Hong Kong Shenzhen China Applied Mathematics and Computational Science Program Computer Electrical and Mathematical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal23955-6900 Saudi Arabia
In this paper we present a new antithetic multilevel Monte Carlo (MLMC) method for the estimation of expectations with respect to laws of diffusion processes that can be elliptic or hypo-elliptic. In particular, we co... 详细信息
来源: 评论
Bayesian multinomial logistic normal models through marginally latent matrix-T processes
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2022年 第1期23卷 255-296页
作者: Justin D. Silverman Kimberly Roche Zachary C. Holmes Lawrence A. David Sayan Mukherjee College of Information Science and Technology Department of Statistics and Institute for Computational and Data Science Penn State University University Park PA Program in Computational Biology and Bioinformatics Duke University Durham NC Department of Molecular Genetics and Microbiology Duke University Durham NC Department of Molecular Genetics and Microbiology and Center for Genomic and Computational Biology Duke University Durham NC Departments of Statistical Science Mathematics Computer Science Biostatistics & Bioinformatics Duke University Durham NC
Bayesian multinomial logistic-normal (MLN) models are popular for the analysis of sequence count data (e.g., microbiome or gene expression data) due to their ability to model multivariate count data with complex covar... 详细信息
来源: 评论
Re-evaluation of the comparative effectiveness of bootstrapbased optimism correction methods in the development of multivariable clinical prediction models
arXiv
收藏 引用
arXiv 2020年
作者: Iba, Katsuhiro Shinozaki, Tomohiro Maruo, Kazushi Noma, Hisashi Department of Statistical Science School of Multidisciplinary Sciences Graduate University for Advanced Studies Tokyo Japan Office of Biostatistics Department of Biometrics Headquarters of Clinical Development Otsuka Pharmaceutical Co. Ltd. Tokyo Japan Department of Information and Computer Technology Faculty of Engineering Tokyo Singapore University of Science Tokyo Japan Department of Biostatistics Faculty of Medicine University of Tsukuba Ibaraki Japan Department of Data Science Institute of Statistical Mathematics Tokyo Japan
Background: Multivariable prediction models are important statistical tools for providing synthetic diagnosis and prognostic algorithms based on patients' multiple characteristics. Their apparent measures for pred... 详细信息
来源: 评论
Bounded Manifold Completion
arXiv
收藏 引用
arXiv 2019年
作者: Gajamannage, Kelum Paffenroth, Randy Department of Mathematics and Statistics Texas A&M University–Corpus Christi Corpus ChristiTX78412 United States Department of Mathematical Sciences Department of Computer Science and Data Science Program Worcester Polytechnic Institute WorcesterMA01609 United States
Nonlinear dimensionality reduction or, equivalently, the approximation of high-dimensional data using a low-dimensional nonlinear manifold is an active area of research. In this paper, we will present a thematically d... 详细信息
来源: 评论
A Nonlinear Dimensionality Reduction Framework Using Smooth Geodesics
arXiv
收藏 引用
arXiv 2017年
作者: Gajamannage, Kelum Paffenroth, Randy Bollt, Erik M. Department of Mathematical Sciences Worcester Polytechnic Institute WorcesterMA01609 United States Department of Mathematical Sciences Department of Computer Science and Data Science Program Worcester Polytechnic Institute WorcesterMA01609 United States Clarkson Center for Complex Systems Science Clarkson University PotsdamNY13676 United States
Existing dimensionality reduction methods are adept at revealing hidden underlying manifolds arising from high-dimensional data and thereby producing a low-dimensional representation. However, the smoothness of the ma... 详细信息
来源: 评论
CellLENS enables cross-domain information fusion for enhanced cell population delineation in single-cell spatial omics data
收藏 引用
Nature Immunology 2025年 1-12页
作者: Bokai Zhu Alex K. Shalek Yunhao Bai Amy Y. Huang Sizun Jiang Sheng Gao Shuxiao Chen Yuchen Wang Jason Yeung Yao Yu Yeo Guanrui Liao Shulin Mao Ka-Chun Wong Zhenghui G. Jiang Scott J. Rodig Garry P. Nolan Zongming Ma Ragon Institute of MGH MIT and Harvard Cambridge MA USA Broad Institute of MIT and Harvard Cambridge MA USA Massachusetts Institute of Technology Cambridge MA USA Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA USA Department of Chemistry Massachusetts Institute of Technology Cambridge MA USA Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA USA Dana-Farber Cancer Institute Boston MA USA Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston MA USA Department of Pathology Brigham and Women’s Hospital Harvard Medical School Boston MA USA Department of Statistics and Data Science The Wharton School University of Pennsylvania Philadelphia PA USA Department of Computer Science City University of Hong Kong Hong Kong People’s Republic of China Center of Hepato-Pancreato-Biliary Surgery The First Affiliated Hospital of Sun Yat-sen University Guangzhou People’s Republic of China Division of Genetics and Genomics Boston Children’s Hospital Harvard Medical School Boston MA USA Program in Biological and Biomedical Sciences Harvard Medical School Boston MA USA Division of Gastroenterology/Liver Center Beth Israel Deaconess Medical Center Harvard Medical School Boston MA USA Department of Pathology Stanford University Stanford CA USA Department of Statistics and Data Science Yale University New Haven CT USA
Delineating cell populations is crucial for understanding immune function in health and disease. Spatial omics technologies offer insights by capturing three complementary domains: single-cell molecular biomarker expr...
来源: 评论