Recent years have seen the wide application of natural language processing(NLP)models in crucial areas such as finance,medical treatment,and news media,raising concerns about the model robustness and *** find that pro...
详细信息
Recent years have seen the wide application of natural language processing(NLP)models in crucial areas such as finance,medical treatment,and news media,raising concerns about the model robustness and *** find that prompt paradigm can probe special robust defects of pre-trained language *** prompt texts are first constructed for inputs and a pre-trained language model can generate adversarial examples for victim models via *** results show that prompt paradigm can efficiently generate more diverse adversarial examples besides synonym ***,we propose a novel robust training approach based on prompt paradigm which incorporates prompt texts as the alternatives to adversarial examples and enhances robustness under a lightweight minimax-style optimization *** on three real-world tasks and two deep neural models show that our approach can significantly improve the robustness of models to resist adversarial attacks.
Mobile Edge Computing(MEC)has been envisioned as a promising distributed computing paradigm where mobile users offload their tasks to edge nodes to decrease the cost of energy and ***,most of the existing studies only...
详细信息
Mobile Edge Computing(MEC)has been envisioned as a promising distributed computing paradigm where mobile users offload their tasks to edge nodes to decrease the cost of energy and ***,most of the existing studies only consider the congestion of wireless channels as a crucial factor affecting the strategy-making process,while ignoring the impact of offloading among edge *** addition,centralized task offloading strategies result in enormous computation complexity in center *** this line,we take both the congestion of wireless channels and the offloading among multiple edge nodes into consideration to enrich users'offloading strategies and propose the Parallel User Selection Algorithm(PUS)and Single User Selection Algorithm(SUS)to substantially accelerate the *** practically,we extend the users'offloading strategies to take into account idle devices and cloud services,which considers the potential computing resources at the ***,we construct a potential game in which each user selfishly seeks an optimal strategy to minimize its cost of latency and energy based on acceptable latency,and find the potential function to prove the existence of Nash equilibrium(NE).Additionally,we update PUS to accelerate its convergence and illustrate its performance through the experimental results of three real datasets,and the updated PUS effectively decreases the total cost and reaches Nash equilibrium.
The extreme learning machine is a fast neural network with outstanding performance. However, the selection of an appropriate number of hidden nodes is time-consuming, because training must be run for several values, a...
详细信息
Graph neural networks(GNNs)have achieved state-of-the-art performance on graph classification tasks,which aim to pre-dict the class labels of entire graphs and have widespread ***,existing GNN based methods for graph ...
详细信息
Graph neural networks(GNNs)have achieved state-of-the-art performance on graph classification tasks,which aim to pre-dict the class labels of entire graphs and have widespread ***,existing GNN based methods for graph classification are data-hungry and ignore the fact that labeling graph examples is extremely expensive due to the intrinsic *** import-antly,real-world graph data are often scattered in different *** by these observations,this article presents federated collaborative graph neural networks for few-shot graph classification,termed *** its owned graph examples,each client first trains two branches to collaboratively characterize each graph from different views and obtains a high-quality local few-shot graph learn-ing model that can generalize to novel categories not seen while *** each branch,initial graph embeddings are extracted by any GNN and the relation information among graph examples is incorporated to produce refined graph representations via relation aggrega-tion layers for few-shot graph classification,which can reduce over-fitting while learning with scarce labeled graph ***,multiple clients owning graph data unitedly train the few-shot graph classification models with better generalization ability and effect-ively tackle the graph data island *** experimental results on few-shot graph classification benchmarks demonstrate the ef-fectiveness and superiority of our proposed framework.
This forum provides a space to engage with the challenges of designing for intelligent algorithmic experiences. We invite articles that tackle the tensions between research and practice when integrating AI and UX desi...
Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention *** machine learning classifiers have emerged as promising tools for malware ***,there remain...
详细信息
Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention *** machine learning classifiers have emerged as promising tools for malware ***,there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware *** this gap can provide valuable insights for enhancing cybersecurity *** numerous studies have explored malware detection using machine learning techniques,there is a lack of systematic comparison of supervised classifiers for Windows malware *** the relative effectiveness of these classifiers can inform the selection of optimal detection methods and improve overall security *** study aims to bridge the research gap by conducting a comparative analysis of supervised machine learning classifiers for detecting malware on Windows *** objectives include Investigating the performance of various classifiers,such as Gaussian Naïve Bayes,K Nearest Neighbors(KNN),Stochastic Gradient Descent Classifier(SGDC),and Decision Tree,in detecting Windows *** the accuracy,efficiency,and suitability of each classifier for real-world malware detection *** the strengths and limitations of different classifiers to provide insights for cybersecurity practitioners and *** recommendations for selecting the most effective classifier for Windows malware detection based on empirical *** study employs a structured methodology consisting of several phases:exploratory data analysis,data preprocessing,model training,and *** data analysis involves understanding the dataset’s characteristics and identifying preprocessing *** preprocessing includes cleaning,feature encoding,dimensionality reduction,and optimization to prepare the data for *** training utilizes various
Byzantine-robust distributed learning (BRDL), in which computing devices are likely to behave abnormally due to accidental failures or malicious attacks, has recently become a hot research topic. However, even in the ...
详细信息
This article presents a protocol for conducting online think-aloud interviews as well as the reflections of the participants and interviewer on this process. The interviewer and participants commenced the interviews i...
详细信息
Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G *** Intelligence(AI)algorithms will be an integral part ...
详细信息
Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G *** Intelligence(AI)algorithms will be an integral part of 6G systems and efficient task offloading techniques using fog computing will improve their performance and *** this paper,the focus is on the scenario of Partial Offloading of a Task to Multiple Helpers(POMH)in which larger tasks are divided into smaller subtasks and processed in parallel,hence expediting task ***,using POMH presents challenges such as breaking tasks into subtasks and scaling these subtasks based on many interdependent factors to ensure that all subtasks of a task finish simultaneously,preventing resource ***,applying matching theory to POMH scenarios results in dynamic preference profiles of helping devices due to changing subtask sizes,resulting in a difficult-to-solve,externalities *** paper introduces a novel many-to-one matching-based algorithm,designed to address the externalities problem and optimize resource allocation within POMH ***,we propose a new time-efficient preference profiling technique that further enhances time optimization in POMH *** performance of the proposed technique is thoroughly evaluated in comparison to alternate baseline schemes,revealing many advantages of the proposed *** simulation findings indisputably show that the proposed matching-based offloading technique outperforms existing methodologies in the literature,yielding a remarkable 52 reduction in task latency,particularly under high workloads.
Transmission delays, load fluctuations, and intermittent output power of renewable energy sources will all have a substantial impact on frequency stability in microgrids (MGs). In response, various types of advanced c...
详细信息
暂无评论