Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)ar...
详细信息
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)areas or high reward(quality)*** existing methods perform exploration by only utilizing the novelty of *** novelty and quality in the neighboring area of the current state have not been well utilized to simultaneously guide the agent’s *** address this problem,this paper proposes a novel RL framework,called clustered reinforcement learning(CRL),for efficient exploration in *** adopts clustering to divide the collected states into several clusters,based on which a bonus reward reflecting both novelty and quality in the neighboring area(cluster)of the current state is given to the *** leverages these bonus rewards to guide the agent to perform efficient ***,CRL can be combined with existing exploration strategies to improve their performance,as the bonus rewards employed by these existing exploration strategies solely capture the novelty of *** on four continuous control tasks and six hard-exploration Atari-2600 games show that our method can outperform other state-of-the-art methods to achieve the best performance.
Searching the occurrences of specific code patterns (code search) is a common task in software engineering, and programming by example (PBE) techniques have been applied to ease customizing code patterns. However, pre...
详细信息
In the contemporary landscape, autonomous vehicles (AVs) have emerged as a prominent technological advancement globally. Despite their widespread adoption, significant hurdles remain, with security standing out as a c...
详细信息
Diabetes disease is prevalent worldwide, and predicting its progression is crucial. Several model have been proposed to predict such disease. Those models only determine the disease label, leaving the likelihood of de...
详细信息
A core challenge in applying deep reinforcement learning (DRL) to real-world tasks is the sparse reward problem, and shaping reward has been one effective method to solve it. However, due to the enormous state space a...
详细信息
Mobile applications(apps for short)often need to display ***,inefficient image displaying(IID)issues are pervasive in mobile apps,and can severely impact app performance and user *** paper first establishes a descript...
详细信息
Mobile applications(apps for short)often need to display ***,inefficient image displaying(IID)issues are pervasive in mobile apps,and can severely impact app performance and user *** paper first establishes a descriptive framework for the image displaying procedures of IID *** on the descriptive framework,we conduct an empirical study of 216 real-world IID issues collected from 243 popular open-source Android apps to validate the presence and severity of IID issues,and then shed light on these issues’characteristics to support research on effective issue *** the findings of this study,we propose a static IID issue detection tool TAPIR and evaluate it with 243 real-world Android ***,49 and 64 previously-unknown IID issues in two different versions of 16 apps reported by TAPIR are manually confirmed as true positives,respectively,and 16 previously-unknown IID issues reported by TAPIR have been confirmed by developers and 13 have been ***,we further evaluate the performance impact of these detected IID issues and the performance improvement if they are *** results demonstrate that the IID issues detected by TAPIR indeed cause significant performance degradation,which further show the effectiveness and efficiency of TAPIR.
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
Aspect-based sentiment analysis (ABSA) is a natural language processing (NLP) technique to determine the various sentiments of a customer in a single comment regarding different aspects. The increasing online data con...
详细信息
In recent years, with the increasingly severe traffic environment, most cities are facing various traffic congestion problems, and the demand for intelligent regulation of traffic signals is also increasing. In this s...
详细信息
In Taiwan, the current electricity prices for residential users remain relatively low. This results in a diminished incentive for these users to invest in energy-saving improvements. Consequently, devising strategies ...
详细信息
暂无评论