Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire *** recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarit...
详细信息
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire *** recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining *** cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival *** analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection *** upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and ***,the histopathology biopsy images are taken from standard data ***,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are ***,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer *** efficacy of the model is evaluated using divergent *** compared with other methods,the proposed work reveals that it offers impressive results for detection.
Emotion Recognition in Conversations(ERC)is fundamental in creating emotionally ***-BasedNetwork(GBN)models have gained popularity in detecting conversational contexts for ERC ***,their limited ability to collect and ...
详细信息
Emotion Recognition in Conversations(ERC)is fundamental in creating emotionally ***-BasedNetwork(GBN)models have gained popularity in detecting conversational contexts for ERC ***,their limited ability to collect and acquire contextual information hinders their *** propose a Text Augmentation-based computational model for recognizing emotions using transformers(TA-MERT)to address *** proposed model uses the Multimodal Emotion Lines Dataset(MELD),which ensures a balanced representation for recognizing human *** used text augmentation techniques to producemore training data,improving the proposed model’s *** encoders train the deep neural network(DNN)model,especially Bidirectional Encoder(BE)representations that capture both forward and backward contextual *** integration improves the accuracy and robustness of the proposed ***,we present a method for balancing the training dataset by creating enhanced samples from the original *** balancing the dataset across all emotion categories,we can lessen the adverse effects of data imbalance on the accuracy of the proposed *** results on the MELD dataset show that TA-MERT outperforms earlier methods,achieving a weighted F1 score of 62.60%and an accuracy of 64.36%.Overall,the proposed TA-MERT model solves the GBN models’weaknesses in obtaining contextual data for ***-MERT model recognizes human emotions more accurately by employing text augmentation and transformer-based *** balanced dataset and the additional training samples also enhance its *** findings highlight the significance of transformer-based approaches for special emotion recognition in conversations.
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high d...
详细信息
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data *** consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)*** user centric deployment of mmWave SBSs inevitably incurs correlation between UE and *** a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave *** using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power *** UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy *** also provide Monte Carlo simulation results to validate the accuracy of the derived ***,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave *** results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots.
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...
详细信息
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network *** study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic *** primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss ***,a carbon tax is included in the objective function to reduce carbon *** scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal *** results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution ***,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)*** research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local *** emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
Ransomware is one of the most advanced malware which uses high computer resources and services to encrypt system data once it infects a system and causes large financial data losses to the organization and individuals...
详细信息
The flow shop scheduling problem is important for the manufacturing *** flow shop scheduling can bring great benefits to the ***,there are few types of research on Distributed Hybrid Flow Shop Problems(DHFSP)by learni...
详细信息
The flow shop scheduling problem is important for the manufacturing *** flow shop scheduling can bring great benefits to the ***,there are few types of research on Distributed Hybrid Flow Shop Problems(DHFSP)by learning assisted *** work addresses a DHFSP with minimizing the maximum completion time(Makespan).First,a mathematical model is developed for the concerned ***,four Q-learning-assisted meta-heuristics,e.g.,genetic algorithm(GA),artificial bee colony algorithm(ABC),particle swarm optimization(PSO),and differential evolution(DE),are *** to the nature of DHFSP,six local search operations are designed for finding high-quality solutions in local *** of randomselection,Q-learning assists meta-heuristics in choosing the appropriate local search operations during ***,based on 60 cases,comprehensive numerical experiments are conducted to assess the effectiveness of the proposed *** experimental results and discussions prove that using Q-learning to select appropriate local search operations is more effective than the random *** verify the competitiveness of the Q-learning assistedmeta-heuristics,they are compared with the improved iterated greedy algorithm(IIG),which is also for solving *** Friedman test is executed on the results by five *** is concluded that the performance of four Q-learning-assisted meta-heuristics are better than IIG,and the Q-learning-assisted PSO shows the best competitiveness.
Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water *** study performs a bibliometric analysis of 352 article...
详细信息
Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water *** study performs a bibliometric analysis of 352 articles and a systematic review of 35 peer-reviewed papers,selected according to PRISMA guidelines,to evaluate the performance of Hybrid Artificial Neural Networks(HANNs)in ET *** findings demonstrate that HANNs,particularly those combining Multilayer Perceptrons(MLPs),Recurrent Neural Networks(RNNs),and Convolutional Neural Networks(CNNs),are highly effective in capturing the complex nonlinear relationships and tem-poral dependencies characteristic of hydrological *** hybrid models,often integrated with optimization algorithms and fuzzy logic frameworks,significantly improve the predictive accuracy and generalization capabilities of ET *** growing adoption of advanced evaluation metrics,such as Kling-Gupta Efficiency(KGE)and Taylor Diagrams,highlights the increasing demand for more robust performance assessments beyond traditional *** the promising results,challenges remain,particularly regarding model interpretability,computational efficiency,and data *** research should prioritize the integration of interpretability techniques,such as attention mechanisms,Local Interpretable Model-Agnostic Explanations(LIME),and feature importance analysis,to enhance model transparency and foster stakeholder ***,improving HANN models’scalability and computational efficiency is crucial,especially for large-scale,real-world *** such as transfer learning,parallel processing,and hyperparameter optimization will be essential in overcoming these *** study underscores the transformative potential of HANN models for precise ET estimation,particularly in water-scarce and climate-vulnerable *** integrating CNNs for automatic feature extraction and leveraging hybr
Nowadays, electronic waste is no longer considered ordinary waste;instead, it is recognized as valuable and hazardous waste containing significant amounts of precious metals. Therefore, it should not be disposed of il...
详细信息
This paper solves the boundary value problem of the second-order differential equation under the neutrosophic fuzzy boundary condition. The proposed solution is approximated using the finite difference method but dene...
详细信息
The e-Iearning system or distance learning system has become important, especially during the COVID-19 pan-demic. Several tertiary institutions have made the e-Iearning system an alternative teaching and learning acti...
详细信息
暂无评论