In the context of online news outlets like Twitter, our work gives a summary of the situation as of rumor identification utilizing visual content. The majority of studies in the literature use visual content to illust...
详细信息
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research...
详细信息
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research is motivated by the pressing demand to enhance transportation mode classification, leveraging the potential of smartphone sensors, notably the accelerometer, magnetometer, and gyroscope. In response to this challenge, we present a novel automated classification model rooted in deep reinforcement learning. Our model stands out for its innovative approach of harnessing enhanced features through artificial neural networks (ANNs) and visualizing the classification task as a structured series of decision-making events. Our model adopts an improved differential evolution (DE) algorithm for initializing weights, coupled with a specialized agent-environment relationship. Every correct classification earns the agent a reward, with additional emphasis on the accurate categorization of less frequent modes through a distinct reward strategy. The Upper Confidence Bound (UCB) technique is used for action selection, promoting deep-seated knowledge, and minimizing reliance on chance. A notable innovation in our work is the introduction of a cluster-centric mutation operation within the DE algorithm. This operation strategically identifies optimal clusters in the current DE population and forges potential solutions using a pioneering update mechanism. When assessed on the extensive HTC dataset, which includes 8311 hours of data gathered from 224 participants over two years. Noteworthy results spotlight an accuracy of 0.88±0.03 and an F-measure of 0.87±0.02, underscoring the efficacy of our approach for large-scale transportation mode classification tasks. This work introduces an innovative strategy in the realm of transportation mode classification, emphasizing both precision and reliability, addressing the pressing need for enhanced classification mechanisms in an eve
Recommender systems play an essential role in decision-making in the information age by reducing information overload via retrieving the most relevant information in various applications. They also present great oppor...
详细信息
Online Social Networks(OSNs)are based on the sharing of different types of information and on various interactions(comments,reactions,and sharing).One of these important actions is the emotional reaction to the *** di...
详细信息
Online Social Networks(OSNs)are based on the sharing of different types of information and on various interactions(comments,reactions,and sharing).One of these important actions is the emotional reaction to the *** diversity of reaction types available on Facebook(namely FB)enables users to express their feelings,and its traceability creates and enriches the users’emotional identity in the virtual *** paper is based on the analysis of 119875012 FB reactions(Like,Love,Haha,Wow,Sad,Angry,Thankful,and Pride)made at multiple levels(publications,comments,and sub-comments)to study and classify the users’emotional behavior,visualize the distribution of different types of reactions,and analyze the gender impact on emotion *** of these can be achieved by addressing these research questions:who reacts the most?Which emotion is the most expressed?
Altruistic Connections is a pioneering social media platform that amalgamates the functionalities of popular networking applications with a unique emphasis on fostering altruistic endeavors. Drawing inspiration from e...
详细信息
Deep learning has become an important computational paradigm in our daily lives with a wide range of applications,from authentication using facial recognition to autonomous driving in smart vehicles. The quality of th...
Deep learning has become an important computational paradigm in our daily lives with a wide range of applications,from authentication using facial recognition to autonomous driving in smart vehicles. The quality of the deep learning models, i.e., neural architectures with parameters trained over a dataset, is crucial to our daily living and economy.
The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study intro...
详细信息
The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. Through a performance analysis of the CEC2013 benchmark, the AIWGOA demonstrates notable advantages across various metrics. Subsequently, an evaluation index was employed to assess the enhanced handwritten documents and images, affirming the superior practical application of the AIWGOA compared with other algorithms.
The micro-morphology and molecular stacking play a key role in determining the charge transport process and nonradiative energy loss, thus impacting the performances of organic solar cells(OSCs). To address this issue...
详细信息
The micro-morphology and molecular stacking play a key role in determining the charge transport process and nonradiative energy loss, thus impacting the performances of organic solar cells(OSCs). To address this issue, a non-fullerene acceptor PhC6-IC-F with alkylbenzene side-chain, possessing optimized molecular stacking, complementary absorption spectra and forming a cascade energy level alignment in the PM6:BTP-eC9 blend, is introduced as guest acceptor to improve efficiency of ternary OSCs. The bulky phenyl in the side-chain can regulate crystallinity and optimizing phase separation between receptors in ternary blend films, resulting in the optimal phase separations in the ternary films. As a result, high efficiencies of 18.33% as photovoltaic layer are obtained for PhC6-IC-F-based ternary devices with excellent fill factor(FF) of 78.92%. Impressively, the ternary system produces a significantly improved open circuit voltage(V_(oc)) of 0.857 V compared with the binary device,contributing to the reduced density of trap states and suppressed non-radiative recombination result in lower energy loss. This work demonstrates an effective approach for adjusting the aggregation, molecular packing and fine phase separation morphology to increase V_(oc) and FF, paving the way toward high-efficiency OSCs.
Stress tolerance plays a vital role in ensuring the effectiveness of piezoresistive sensing films used in flexible pressure ***,existing methods for enhancing stress tolerance employ dome-shaped,wrinkle-shaped,and pyr...
详细信息
Stress tolerance plays a vital role in ensuring the effectiveness of piezoresistive sensing films used in flexible pressure ***,existing methods for enhancing stress tolerance employ dome-shaped,wrinkle-shaped,and pyramidal-shaped microstructures in intricate molding and demolding processes,which introduce significant fabrication challenges and limit the sensing *** address these shortcomings,this paper presents periodic microslits in a sensing film made of multiwalled carbon nanotubes and polydimethylsiloxane to realize ultrahigh stress tolerance with a theoretical maximum of 2.477 MPa and a sensitivity of 18.092 kPa−*** periodic microslits permit extensive deformation under high pressure(e.g.,400 kPa)to widen the detection ***,the periodic microslits also enhance the sensitivity based on simultaneously exhibiting multiple synapses within the sensing interface and between the periodic sensing *** proposed solution is verified by experiments using sensors based on the microslit strategy for wind direction detection,robot movement sensing,and human health *** these experiments,vehicle load detection is achieved for ultrahigh pressure sensing under an ultrahigh pressure of over 400 kPa and a ratio of the contact area to the total area of 32.74%.The results indicate that the proposed microslit strategy can achieve ultrahigh stress tolerance while simplifying the fabrication complexity of preparing microstructure sensing films.
Long Short-Term Memory (LSTM) networks are particularly useful in recommender systems since user preferences change over time. Unlike traditional recommender models which assume static user-item interactions, LSTM mod...
详细信息
暂无评论