In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential r...
详细信息
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)*** proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the *** optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each *** the score values of alternatives are computed based on the aggregated *** alternative with the maximum score value is selected as a better *** applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning ***,we have validated the proposed approach with a numerical ***,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments.
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and ...
详细信息
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation *** computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end *** of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud *** smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system *** address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog *** framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation *** FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud *** simulation-based executions,tasks are allocated to the nearest available nodes with minimum *** the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of *** successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.
A Brain Tumors are highly dangerous illnesses that significantly reduce the life expectancy of patients. The classification of brain tumors plays a crucial role in clinical diagnosis and effective treatment. The misdi...
详细信息
A Brain Tumors are highly dangerous illnesses that significantly reduce the life expectancy of patients. The classification of brain tumors plays a crucial role in clinical diagnosis and effective treatment. The misdiagnosis of brain tumors will result in wrong medical intercession and reduce chance of survival of patients Precisely diagnosing brain tumors is of utmost importance for devising suitable treatment plans that can effectively cure and improve the quality of life for patients afflicted with this condition. To tackle this challenge, present a framework that harnesses deep convolutional layers to automatically extract crucial and resilient features from the input data. Systems that use computers and with the help of convolutional neural networks have provided huge success stories in early detection of tumors. In our framework, utilize VGG19 model combined with fuzzy logic type-2 where used fuzzy logic type-2 that applied to enhancement the images brain where Type-2 fuzzy logic better handles uncertainty in medical images, improving the interpretability of image enhancement by managing noise and subtle differences with greater precision than Type-1 fuzzy logic for MRI images often contain ambiguous or low-contrast areas where noise, lighting conditions different and greatly improve accuracy. while used the VGG19 architecture to feature extraction and classify Tumor and non- Tumor. This approach enhances the accuracy of tumors classification, aiding in the development of targeted treatment strategies for patients. The method is trained on the Br35H dataset, resulting in a training accuracy of 0.9983 % and Train loss of 0.2118 while the validation accuracy of 0.9953 % validation loss of 0.2264. This demonstrates effective pattern learning and generalization capabilities. The model achieves outstanding accuracy, with a best accuracy for the model of 0.9983 %, While the test accuracy of the model reached of 99 %, and both of sensitivity and specificity at 0.9967
A multi-secret image sharing (MSIS) scheme facilitates the secure distribution of multiple images among a group of participants. Several MSIS schemes have been proposed with a (n, n) structure that encodes secret...
详细信息
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their *** the analysis of these reviews is vital for efficient review *** traditional machine learning(M...
详细信息
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their *** the analysis of these reviews is vital for efficient review *** traditional machine learning(ML)models rely on basic word-based feature extraction,deep learning(DL)methods,enhanced with advanced word embeddings,have shown superior *** research introduces a novel aspectbased sentiment analysis(ABSA)framework to classify app reviews based on key non-functional requirements,focusing on usability factors:effectiveness,efficiency,and *** propose a hybrid DL model,combining BERT(Bidirectional Encoder Representations from Transformers)with BiLSTM(Bidirectional Long Short-Term Memory)and CNN(Convolutional Neural Networks)layers,to enhance classification *** analysis against state-of-the-art models demonstrates that our BERT-BiLSTM-CNN model achieves exceptional performance,with precision,recall,F1-score,and accuracy of 96%,87%,91%,and 94%,*** contributions of this work include a refined ABSA-based relabeling framework,the development of a highperformance classifier,and the comprehensive relabeling of the Instagram App Reviews *** advancements provide valuable insights for software developers to enhance usability and drive user-centric application development.
In the context of security systems,adequate signal coverage is paramount for the communication between security personnel and the accurate positioning of *** studies focus on optimizing base station deployment under t...
详细信息
In the context of security systems,adequate signal coverage is paramount for the communication between security personnel and the accurate positioning of *** studies focus on optimizing base station deployment under the assumption of static obstacles,aiming to maximize the perception coverage of wireless RF(Radio Frequency)signals and reduce positioning blind ***,in practical security systems,obstacles are subject to change,necessitating the consideration of base station deployment in dynamic ***,research in this area still needs to be *** paper proposes a Dynamic Indoor Environment Beacon Deployment Algorithm(DIE-BDA)to address this *** algorithm considers the dynamic alterations in obstacle locations within the designated *** determines the requisite number of base stations,the requisite time,and the area’s practical and overall signal coverage *** experimental results demonstrate that the algorithm can calculate the deployment strategy in 0.12 s following a change in obstacle *** results show that the algorithm in this paper requires 0.12 s to compute the deployment strategy after the positions of obstacles *** 13 base stations,it achieves an effective coverage rate of 93.5%and an overall coverage rate of 97.75%.The algorithm can rapidly compute a revised deployment strategy in response to changes in obstacle positions within security systems,thereby ensuring the efficacy of signal coverage.
In recent years, mental health issues have profoundly impacted individuals’ well-being, necessitating prompt identification and intervention. Existing approaches grapple with the complex nature of mental health, faci...
详细信息
In recent years, mental health issues have profoundly impacted individuals’ well-being, necessitating prompt identification and intervention. Existing approaches grapple with the complex nature of mental health, facing challenges like task interference, limited adaptability, and difficulty in capturing nuanced linguistic expressions indicative of various conditions. In response to these challenges, our research presents three novel models employing multi-task learning (MTL) to understand mental health behaviors comprehensively. These models encompass soft-parameter sharing-based long short-term memory with attention mechanism (SPS-LSTM-AM), SPS-based bidirectional gated neural networks with self-head attention mechanism (SPS-BiGRU-SAM), and SPS-based bidirectional neural network with multi-head attention mechanism (SPS-BNN-MHAM). Our models address diverse tasks, including detecting disorders such as bipolar disorder, insomnia, obsessive-compulsive disorder, and panic in psychiatric texts, alongside classifying suicide or non-suicide-related texts on social media as auxiliary tasks. Emotion detection in suicide notes, covering emotions of abuse, blame, and sorrow, serves as the main task. We observe significant performance enhancement in the primary task by incorporating auxiliary tasks. Advanced encoder-building techniques, including auto-regressive-based permutation and enhanced permutation language modeling, are recommended for effectively capturing mental health contexts’ subtleties, semantic nuances, and syntactic structures. We present the shared feature extractor called shared auto-regressive for language modeling (S-ARLM) to capture high-level representations that are useful across tasks. Additionally, we recommend soft-parameter sharing (SPS) subtypes-fully sharing, partial sharing, and independent layer-to minimize tight coupling and enhance adaptability. Our models exhibit outstanding performance across various datasets, achieving accuracies of 96.9%, 97.
The rapid advancement and proliferation of Cyber-Physical Systems (CPS) have led to an exponential increase in the volume of data generated continuously. Efficient classification of this streaming data is crucial for ...
详细信息
The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the...
详细信息
The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the selection of appropriate routing protocols, which is crucial for maintaining high Quality of Service (QoS). The Internet Engineering Task Force’s Routing Over Low Power and Lossy Networks (IETF ROLL) working group developed the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) to meet these needs. While the initial RPL standard focused on single-metric route selection, ongoing research explores enhancing RPL by incorporating multiple routing metrics and developing new Objective Functions (OFs). This paper introduces a novel Objective Function (OF), the Reliable and Secure Objective Function (RSOF), designed to enhance the reliability and trustworthiness of parent selection at both the node and link levels within IoT and RPL routing protocols. The RSOF employs an adaptive parent node selection mechanism that incorporates multiple metrics, including Residual Energy (RE), Expected Transmission Count (ETX), Extended RPL Node Trustworthiness (ERNT), and a novel metric that measures node failure rate (NFR). In this mechanism, nodes with a high NFR are excluded from the parent selection process to improve network reliability and stability. The proposed RSOF was evaluated using random and grid topologies in the Cooja Simulator, with tests conducted across small, medium, and large-scale networks to examine the impact of varying node densities. The simulation results indicate a significant improvement in network performance, particularly in terms of average latency, packet acknowledgment ratio (PAR), packet delivery ratio (PDR), and Control Message Overhead (CMO), compared to the standard Minimum Rank with Hysteresis Objective Function (MRHOF).
The essence of music is inherently multi-modal – with audio and lyrics going hand in hand. However, there is very less research done to study the intricacies of the multi-modal nature of music, and its relation with ...
详细信息
暂无评论