Recently, redactable blockchain has been proposed and leveraged in a wide range of real systems for its unique properties of decentralization, traceability, and transparency while ensuring controllable on-chain data r...
详细信息
Recently, redactable blockchain has been proposed and leveraged in a wide range of real systems for its unique properties of decentralization, traceability, and transparency while ensuring controllable on-chain data redaction. However, the development of redactable blockchain is now obstructed by three limitations, which are data privacy breaches, high communication overhead, and low searching efficiency, respectively. In this paper, we propose PriChain, the first efficient privacy-preserving fine-grained redactable blockchain in decentralized settings. PriChain provides data owners with rights to control who can read and redact on-chain data while maintaining downward compatibility, ensuring the one who can redact will be able to read. Specifically, inspired by the concept of multi-authority attribute-based encryption, we utilize the isomorphism of the access control tree, realizing fine-grained redaction mechanism, downward compatibility, and collusion resistance. With the newly designed structure, PriChain can realize O(n) communication and storage overhead compared to prior O(n2) schemes. Furthermore, we integrate multiple access trees into a tree-based dictionary, optimizing searching efficiency. Theoretical analysis proves that PriChain is secure against the chosen-plaintext attack and has competitive complexity. The experimental evaluations show that PriChain realizes 10× efficiency improvement of searching and 100× lower communication and storage overhead on average compared with existing schemes.
Therapeutic peptides contribute significantly to human health and have the potential for personalized medicine. The prediction for the therapeutic peptides is beneficial and emerging for the discovery of drugs. Althou...
详细信息
Therapeutic peptides contribute significantly to human health and have the potential for personalized medicine. The prediction for the therapeutic peptides is beneficial and emerging for the discovery of drugs. Although several computational approaches have emerged to discern the functions of therapeutic peptides, predicting multi-functional therapeutic peptide types is challenging. In this research, a novel approach termed TPpred-SC has been introduced. This method leverages a pretrained protein language model alongside multi-label supervised contrastive learning to predict multi-functional therapeutic *** framework incorporates sequential semantic information directly from large-scale protein sequences in TAPE. Then, TPpred-SC exploits multi-label supervised contrastive learning to enhance the representation of peptide sequences for imbalanced multi-label therapeutic peptide prediction. The experimental findings demonstrate that TPpred-SC achieves superior performance compared to existing related methods. To serve our work more efficiently, the web server of TPpred-SC can be accessed at http://***/TPpred-SC.
Cross-platform binary code similarity detection aims at detecting whether two or more pieces of binary code are similar or not. Existing approaches that combine control flow graphs(CFGs)-based function representation ...
详细信息
Cross-platform binary code similarity detection aims at detecting whether two or more pieces of binary code are similar or not. Existing approaches that combine control flow graphs(CFGs)-based function representation and graph convolutional network(GCN)-based similarity analysis are the best-performing ones. Due to a large amount of convolutional computation and the loss of structural information, the use of convolution networks will inevitably bring problems such as high overhead and sometimes inaccuracy. To address these issues, we propose a fast cross-platform binary code similarity detection framework that takes advantage of natural language processing(NLP)and inductive graph neural network(GNN) for basic blocks embedding and function representation respectively by simulating extracting structural features and temporal features. GNN's node-centric and small batch is a suitable training way for large CFGs, it can greatly reduce computational overhead. Various NLP basic block embedding models and GNNs are evaluated. Experimental results show that the scheme with long short term memory(LSTM)for basic blocks embedding and inductive learning-based Graph SAGE(GAE) for function representation outperforms the state-of-the-art works. In our framework, we can take only 45% overhead. Improve efficiency significantly with a small performance trade-off.
Visible and infrared image fusion(VIF)aims to combine information from visible and infrared images into a single fused *** VIF methods usually employ a color space transformation to keep the hue and saturation from th...
详细信息
Visible and infrared image fusion(VIF)aims to combine information from visible and infrared images into a single fused *** VIF methods usually employ a color space transformation to keep the hue and saturation from the original visible ***,for fast VIF methods,this operation accounts for the majority of the calculation and is the bottleneck preventing faster *** this paper,we propose a fast fusion method,FCDFusion,with little color *** preserves color information without color space transformations,by directly operating in RGB color *** incorporates gamma correction at little extra cost,allowing color and contrast to be rapidly *** regard the fusion process as a scaling operation on 3D color vectors,greatly simplifying the calculations.A theoretical analysis and experiments show that our method can achieve satisfactory results in only 7 FLOPs per *** to state-of-theart fast,color-preserving methods using HSV color space,our method provides higher contrast at only half of the computational *** further propose a new metric,color deviation,to measure the ability of a VIF method to preserve *** is specifically designed for VIF tasks with color visible-light images,and overcomes deficiencies of existing VIF metrics used for this *** code is available at https://***/HeasonLee/FCDFusion.
Denoising(DN) and demosaicing(DM) are the first crucial stages in the image signal processing pipeline. Recently, researches pay more attention to solve DN and DM in a joint manner, which is an extremely undetermined ...
详细信息
Denoising(DN) and demosaicing(DM) are the first crucial stages in the image signal processing pipeline. Recently, researches pay more attention to solve DN and DM in a joint manner, which is an extremely undetermined inverse problem. Existing deep learning methods learn the desired prior on synthetic dataset, which limits the generalization of learned network to the real world data. Moreover, existing methods mainly focus on the raw data property of high green information sampling rate for DM, but occasionally exploit the high intensity and signalto-noise(SNR) of green channel. In this work, a deep guided attention network(DGAN) is presented for real image joint DN and DM(JDD), which considers both high SNR and high sampling rate of green information for DN and DM, respectively. To ease the training and fully exploit the data property of green channel, we first train DN and DM sub-networks sequentially and then learn them jointly, which can alleviate the error accumulation. Besides, in order to support the real image JDD, we collect paired raw clean RGB and noisy mosaic images to conduct a realistic dataset. The experimental results on real JDD dataset show the presented approach performs better than the state-of-the-art methods, in terms of both quantitative metrics and qualitative visualization.
Models based on MLP-Mixer architecture are becoming popular,but they still sufer from adversarial *** it has been shown that MLP-Mixer is more robust to adversarial attacks compared to convolutional neural networks(CN...
详细信息
Models based on MLP-Mixer architecture are becoming popular,but they still sufer from adversarial *** it has been shown that MLP-Mixer is more robust to adversarial attacks compared to convolutional neural networks(CNNs),there has been no research on adversarial attacks tailored to its *** this paper,we fll this *** propose a dedicated attack framework called Maxwell’s demon Attack(MA).Specifcally,we break the chan‑nel-mixing and token-mixing mechanisms of the MLP-Mixer by perturbing inputs of each Mixer layer to achieve high *** demonstrate that disrupting the MLP-Mixer’s capture of the main information of images by mask‑ing its inputs can generate adversarial examples with cross-architectural *** evaluations show the efectiveness and superior performance of *** generated based on masked inputs obtain a higher success rate of black-box attacks than existing transfer ***,our approach can be easily combined with existing methods to improve the transferability both within MLP-Mixer based models and to models with difer‑ent *** achieve up to 55.9%attack performance *** work exploits the true generaliza‑tion potential of the MLP-Mixer adversarial space and helps make it more robust for future deployments.
Language-guided fashion image editing is challenging,as fashion image editing is local and requires high precision,while natural language cannot provide precise visual information for *** this paper,we propose LucIE,a...
详细信息
Language-guided fashion image editing is challenging,as fashion image editing is local and requires high precision,while natural language cannot provide precise visual information for *** this paper,we propose LucIE,a novel unsupervised language-guided local image editing method for fashion *** adopts and modifies recent text-to-image synthesis network,DF-GAN,as its ***,the synthesis backbone often changes the global structure of the input image,making local image editing *** increase structural consistency between input and edited images,we propose Content-Preserving Fusion Module(CPFM).Different from existing fusion modules,CPFM prevents iterative refinement on visual feature maps and accumulates additive modifications on RGB *** achieves local image editing explicitly with language-guided image segmentation and maskguided image blending while only using image and text *** on the DeepFashion dataset shows that LucIE achieves state-of-the-art *** with previous methods,images generated by LucIE also exhibit fewer *** provide visualizations and perform ablation studies to validate LucIE and the *** also demonstrate and analyze limitations of LucIE,to provide a better understanding of LucIE.
With the development of information technology and cloud computing,data sharing has become an important part of scientific *** traditional data sharing,data is stored on a third-party storage platform,which causes the...
详细信息
With the development of information technology and cloud computing,data sharing has become an important part of scientific *** traditional data sharing,data is stored on a third-party storage platform,which causes the owner to lose control of the *** a result,there are issues of intentional data leakage and tampering by third parties,and the private information contained in the data may lead to more significant ***,data is frequently maintained on multiple storage platforms,posing significant hurdles in terms of enlisting multiple parties to engage in data sharing while maintaining *** this work,we propose a new architecture for applying blockchains to data sharing and achieve efficient and reliable data sharing among heterogeneous *** design a new data sharing transaction mechanism based on the system architecture to protect the security of the raw data and the processing *** also design and implement a hybrid concurrency control protocol to overcome issues caused by the large differences in blockchain performance in our system and to improve the success rate of data sharing *** took Ethereum and Hyperledger Fabric as examples to conduct crossblockchain data sharing *** results show that our system achieves data sharing across heterogeneous blockchains with reasonable performance and has high scalability.
The widespread use of the Internet of Things(IoTs)and the rapid development of artificial intelligence technologies have enabled applications to cross commercial and industrial band *** such systems,all participants r...
详细信息
The widespread use of the Internet of Things(IoTs)and the rapid development of artificial intelligence technologies have enabled applications to cross commercial and industrial band *** such systems,all participants related to commercial and industrial systems must communicate and generate ***,due to the small storage capacities of IoT devices,they are required to store and transfer the generated data to third-party entity called“cloud”,which creates one single point to store their ***,as the number of participants increases,the size of generated data also ***,such a centralized mechanism for data collection and exchange between participants is likely to face numerous challenges in terms of security,privacy,and *** address these challenges,Federated Learning(FL)has been proposed as a reasonable decentralizing approach,in which clients no longer need to transfer and store real data in the central ***,they only share updated training models that are trained over their private *** the same time,FL enables clients in distributed systems to share their machine learning models collaboratively without their training data,thus reducing data privacy and security ***,slow model training and the execution of additional unnecessary communication rounds may hinder FL applications from operating properly in a distributed ***,these unnecessary communication rounds make the system vulnerable to security and privacy issues,because irrelevant model updates are sent between clients and ***,in this work,we propose an algorithm for fully homomorphic encryption called Cheon-Kim-Kim-Song(CKKS)to encrypt model parameters for their local information privacy-preserving *** proposed solution uses the impetus term to speed up model convergence during the model training ***,it establishes a secure communication channel between IoT devices and the *** a
Customized keyword spotting needs to adapt quickly to small user *** methods primarily solve the problem under moderate noise *** work increases the level of difficulty in detecting keywords by introducing keyword ***...
详细信息
Customized keyword spotting needs to adapt quickly to small user *** methods primarily solve the problem under moderate noise *** work increases the level of difficulty in detecting keywords by introducing keyword ***,the current solution has been explored on large models with many parameters,making it unsuitable for deployment on small *** applying the current solution to lightweight models with minimal training data,the performance degrades compared to the baseline ***,we propose a light-weight multi-task architecture(<9.0×10^(4)parameters)created from integrating the triplet attention module in the ConvMixer networks and a new auxiliary mixed labeling encoding to address the *** results of our experiment show that the proposed model outperforms similar light-weight models for keyword spotting,with accuracy gains ranging from 0.73%to 2.95%for a clean set and from 2.01%to 3.37%for a mixed set under different scales of training ***,our model shows its robustness in different low-resource language datasets while converging faster.
暂无评论