We consider a power system whose electric demand pertaining to freshwater production is high(high freshwater electric demand),as in the Middle East,and investigate the tradeoff of storing freshwater in tanks versus st...
详细信息
We consider a power system whose electric demand pertaining to freshwater production is high(high freshwater electric demand),as in the Middle East,and investigate the tradeoff of storing freshwater in tanks versus storing electricity in batteries at the day-ahead operation *** storing freshwater and storing electricity increase the actual electric demand at valley hours and decrease it at peak hours,which is generally beneficial in term of cost and ***,to what extent?We analyze this question considering three power systems with different generation-mix configurations,i.e.,a thermal-dominated mix,a renewable-dominated one,and a fully renewable *** generation-mix configurations are inspired by how power systems may evolve in different countries in the Middle *** production uncertainty is compactly modeled using chance *** draw conclusions on how both storage facilities(freshwater and electricity)complement each other to render an optimal operation of the power system.
This paper presents a novel supervised learning framework for real-time optimization of multi-parametric mixed-integer quadratic programming (mp-MIQP) problems. The framework utilizes a multi-layer perceptron (MLP) mo...
详细信息
This article formulates interactive adversarial differential graphical games for synchronization control of multiagent systems(MASs) subject to adversarial inputs interacting with the systems through topology communic...
详细信息
This article formulates interactive adversarial differential graphical games for synchronization control of multiagent systems(MASs) subject to adversarial inputs interacting with the systems through topology communications. Local control and interactive adversarial inputs affect each agent's local synchronization error via local networks. The distributed global Nash equilibrium(NE) solutions are guaranteed in the games by solving the optimal control input of each agent and the worst-case adversarial input based solely on local states and communications. The asymptotic stability of the local synchronization error dynamics and the NE are guaranteed. Furthermore, the authors devise a data-driven online reinforcement learning(RL) algorithm that only computes the distributed Nash control online using system trajectory data, eliminating the need for explicit system dynamics. A simulation-based example validates the game and algorithm.
The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text ***,BERT’s ...
详细信息
The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text ***,BERT’s size and computational demands limit its practicality,especially in resource-constrained *** research compresses the BERT base model for Bengali emotion classification through knowledge distillation(KD),pruning,and quantization *** Bengali being the sixth most spoken language globally,NLP research in this area is *** approach addresses this gap by creating an efficient BERT-based model for Bengali *** have explored 20 combinations for KD,quantization,and pruning,resulting in improved speedup,fewer parameters,and reduced memory *** best results demonstrate significant improvements in both speed and *** instance,in the case of mBERT,we achieved a 3.87×speedup and 4×compression ratio with a combination of Distil+Prune+Quant that reduced parameters from 178 to 46 M,while the memory size decreased from 711 to 178 *** results offer scalable solutions for NLP tasks in various languages and advance the field of model compression,making these models suitable for real-world applications in resource-limited environments.
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention...
详细信息
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention on privacy-preserving model explanations. This article presents the first thorough survey about privacy attacks on model explanations and their countermeasures. Our contribution to this field comprises a thorough analysis of research papers with a connected taxonomy that facilitates the categorization of privacy attacks and countermeasures based on the targeted explanations. This work also includes an initial investigation into the causes of privacy leaks. Finally, we discuss unresolved issues and prospective research directions uncovered in our analysis. This survey aims to be a valuable resource for the research community and offers clear insights for those new to this domain. To support ongoing research, we have established an online resource repository, which will be continuously updated with new and relevant findings.
The increasing number of electronic transactions on the Internet has given rise to the design of recommendation systems. The main objective of these systems is to give recommendations to the users about the items (i.e...
详细信息
Direct training of Spiking Neural Networks (SNNs) is a challenging task because of their inherent temporality. Added to it, the vanilla Back-propagation based methods are not applicable either, due to the non-differen...
详细信息
Direct training of Spiking Neural Networks (SNNs) is a challenging task because of their inherent temporality. Added to it, the vanilla Back-propagation based methods are not applicable either, due to the non-differentiability of the spikes in SNNs. Surrogate-Derivative based methods with Backpropagation Through Time (BPTT) address these direct training challenges quite well;however, such methods are not neuromorphic-hardware friendly for the On-chip training of SNNs. Recently formalized Three-Factor based Rules (TFR) for direct local-training of SNNs are neuromorphic-hardware friendly;however, they do not effectively leverage the depth of the SNN architectures (we show it empirically here), thus, are limited. In this work, we present an improved version of a conventional three-factor rule, for local learning in SNNs which effectively leverages depth - in the context of learning features hierarchically. Taking inspiration from the Back-propagation algorithm, we theoretically derive our improved, local, three-factor based learning method, named DALTON (Deep LocAl Learning via local WeighTs and SurrOgate-Derivative TraNsfer), which employs weights and surrogate-derivative transfer from the local layers. Along the lines of TFR, our proposed method DALTON is also amenable to the neuromorphic-hardware implementation. Through extensive experiments on static (MNIST, FMNIST, & CIFAR10) and event-based (N-MNIST, DVS128-Gesture, & DVSCIFAR10) datasets, we show that our proposed local-learning method DALTON makes effective use of the depth in Convolutional SNNs, compared to the vanilla TFR implementation. IEEE
Video captioning is the process of automatically generating natural language descriptions of video content. Historically, most video captioning methods have relied on extending Sequence-to-Sequence (Seq2Seq) models. H...
详细信息
In this paper we show a polar coding scheme for the deletion channel with a probability of error that decays roughly like 2-√Λ, where Λ is the length of the codeword. That is, the same decay rate as that of seminal...
详细信息
This study proposes a real-time integrated framework for LiDAR-based object tracking in autonomous driving environments. Advancements in LiDAR sensors are increasing point cloud data collection, leading to a demand fo...
详细信息
暂无评论