Network updates have become increasingly prevalent since the broad adoption of software-defined networks(SDNs)in data *** TCP designs,including cutting-edge TCP variants DCTCP,CUBIC,and BBR,however,are not resilient t...
详细信息
Network updates have become increasingly prevalent since the broad adoption of software-defined networks(SDNs)in data *** TCP designs,including cutting-edge TCP variants DCTCP,CUBIC,and BBR,however,are not resilient to network updates that provoke flow *** this paper,we first demonstrate that popular TCP implementations perform inadequately in the presence of frequent and inconsistent network updates,because inconsistent and frequent network updates result in out-of-order packets and packet drops induced via transitory congestion and lead to serious performance *** look into the causes and propose a network update-friendly TCP(NUFTCP),which is an extension of the DCTCP variant,as a *** are used to assess the proposed *** findings reveal that NUFTCP can more effectively manage the problems of out-of-order packets and packet drops triggered in network updates,and it outperforms DCTCP considerably.
Skin cancer,a severe health threat,can spread rapidly if ***,early detection can lead to an advanced and efficient diagnosis,thus reducing *** classification techniques analyse extensive skin image datasets,identifyin...
详细信息
Skin cancer,a severe health threat,can spread rapidly if ***,early detection can lead to an advanced and efficient diagnosis,thus reducing *** classification techniques analyse extensive skin image datasets,identifying patterns and anomalies without prior labelling,facilitating early detection and effective diagnosis and potentially saving *** this study,the authors aim to explore the potential of unsupervised learning methods in classifying different types of skin lesions in dermatoscopic *** authors aim to bridge the gap in dermatological research by introducing innovative techniques that enhance image quality and improve feature *** achieve this,enhanced super-resolution generative adversarial networks(ESRGAN)was fine-tuned to strengthen the resolution of skin lesion images,making critical features more *** authors extracted histogram features to capture essential colour characteristics and used the Davies-Bouldin index and silhouette score to determine optimal ***-tuned k-means clustering with Euclidean distance in the histogram feature space achieved 87.77% and 90.5% test accuracies on the ISIC2019 and HAM10000 datasets,*** unsupervised approach effectively categorises skin lesions,indicating that unsupervised learning can significantly advance dermatology by enabling early detection and classification without extensive manual annotation.
Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are v...
详细信息
Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are vital in facilitating end-user communication ***,the security of Android systems has been challenged by the sensitive data involved,leading to vulnerabilities in mobile devices used in 5G *** vulnerabilities expose mobile devices to cyber-attacks,primarily resulting from security ***-permission apps in Android can exploit these channels to access sensitive information,including user identities,login credentials,and geolocation *** such attack leverages"zero-permission"sensors like accelerometers and gyroscopes,enabling attackers to gather information about the smartphone's *** underscores the importance of fortifying mobile devices against potential future *** research focuses on a new recurrent neural network prediction model,which has proved highly effective for detecting side-channel attacks in mobile devices in 5G *** conducted state-of-the-art comparative studies to validate our experimental *** results demonstrate that even a small amount of training data can accurately recognize 37.5%of previously unseen user-typed ***,our tap detection mechanism achieves a 92%accuracy rate,a crucial factor for text *** findings have significant practical implications,as they reinforce mobile device security in 5G networks,enhancing user privacy,and data protection.
All the software products developed will need testing to ensure the quality and accuracy of the product. It makes the life of testers much easier when they can optimize on the effort spent and predict defects for the ...
详细信息
The idea of sustainable cities has drawn a lot of attention due to the quick expansion of metropolitan areas as well as the growing problems brought on by resource scarcity and climate change. Cities that prioritize s...
详细信息
The rapid advancement and proliferation of Cyber-Physical Systems (CPS) have led to an exponential increase in the volume of data generated continuously. Efficient classification of this streaming data is crucial for ...
详细信息
Reduplication is a highly productive process in Bengali word formation, with significant implications for various natural language processing (NLP) applications, such as parts-of-speech tagging and sentiment analysis....
详细信息
Automated detection of plant diseases is crucial as it simplifies the task of monitoring large farms and identifies diseases at their early stages to mitigate further plant degradation. Besides the decline in plant he...
详细信息
In recent years,developed Intrusion Detection Systems(IDSs)perform a vital function in improving security and anomaly *** effectiveness of deep learning-based methods has been proven in extracting better features and ...
详细信息
In recent years,developed Intrusion Detection Systems(IDSs)perform a vital function in improving security and anomaly *** effectiveness of deep learning-based methods has been proven in extracting better features and more accurate classification than other *** this paper,a feature extraction with convolutional neural network on Internet of Things(IoT)called FECNNIoT is designed and implemented to better detect anomalies on the ***,a binary multi-objective enhance of the Gorilla troops optimizer called BMEGTO is developed for effective feature ***,the combination of FECNNIoT and BMEGTO and KNN algorithm-based classification technique has led to the presentation of a hybrid method called *** the next step,the proposed model is implemented on two benchmark data sets,NSL-KDD and TON-IoT and tested regarding the accuracy,precision,recall,and Fl-score *** proposed CNN-BMEGTO-KNN model has reached 99.99%and 99.86%accuracy on TON-IoT and NSL-KDD datasets,*** addition,the proposed BMEGTO method can identify about 27%and 25%of the effective features of the NSL-KDD and TON-IoT datasets,respectively.
We present a novel attention-based mechanism to learn enhanced point features for point cloud processing tasks, e.g., classification and segmentation. Unlike prior studies, which were trained to optimize the weights o...
详细信息
We present a novel attention-based mechanism to learn enhanced point features for point cloud processing tasks, e.g., classification and segmentation. Unlike prior studies, which were trained to optimize the weights of a pre-selected set of attention points, our approach learns to locate the best attention points to maximize the performance of a specific task, e.g., point cloud classification. Importantly, we advocate the use of single attention point to facilitate semantic understanding in point feature learning. Specifically,we formulate a new and simple convolution, which combines convolutional features from an input point and its corresponding learned attention point(LAP). Our attention mechanism can be easily incorporated into state-of-the-art point cloud classification and segmentation networks. Extensive experiments on common benchmarks, such as Model Net40, Shape Net Part, and S3DIS, all demonstrate that our LAP-enabled networks consistently outperform the respective original networks, as well as other competitive alternatives, which employ multiple attention points, either pre-selected or learned under our LAP framework.
暂无评论