Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,in...
详细信息
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,including scattering noise,low contrast,and limited resolution in ultrasound *** existing segmentation models have made progress,they still suffer from several limitations,such as high error rates,low generalizability,overfitting,limited feature learning capability,*** address these challenges,this paper proposes a Multi-level Relation Transformer-based U-Net(MLRT-UNet)to improve thyroid nodule *** MLRTUNet leverages a novel Relation Transformer,which processes images at multiple scales,overcoming the limitations of traditional encoding *** transformer integrates both local and global features effectively through selfattention and cross-attention units,capturing intricate relationships within the *** approach also introduces a Co-operative Transformer Fusion(CTF)module to combine multi-scale features from different encoding layers,enhancing the model’s ability to capture complex patterns in the ***,the Relation Transformer block enhances long-distance dependencies during the decoding process,improving segmentation *** results showthat the MLRT-UNet achieves high segmentation accuracy,reaching 98.2% on the Digital Database Thyroid Image(DDT)dataset,97.8% on the Thyroid Nodule 3493(TG3K)dataset,and 98.2% on the Thyroid Nodule3K(TN3K)*** findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule segmentation,addressing the limitations of existing models.
Computed Tomography(CT)images have been extensively employed in disease diagnosis and treatment,causing a huge concern over the dose of radiation to which patients are *** the radiation dose to get a better image may ...
详细信息
Computed Tomography(CT)images have been extensively employed in disease diagnosis and treatment,causing a huge concern over the dose of radiation to which patients are *** the radiation dose to get a better image may lead to the development of genetic disorders and cancer in the patients;on the other hand,decreasing it by using a Low-Dose CT(LDCT)image may cause more noise and increased artifacts,which can compromise the ***,image reconstruction from LDCT image data is necessary to improve radiologists’judgment and *** study proposed three novel models for denoising LDCT images based on Wasserstein Generative Adversarial Network(WGAN).They were incorporated with different loss functions,including Visual Geometry Group(VGG),Structural Similarity Loss(SSIM),and Structurally Sensitive Loss(SSL),to reduce noise and preserve important information on LDCT images and investigate the effect of different types of loss ***,experiments have been conducted on the Graphical Processing Unit(GPU)and Central Processing Unit(CPU)to compare the performance of the proposed *** results demonstrated that images from the proposed WGAN-SSIM,WGAN-VGG-SSIM,and WGAN-VGG-SSL were denoised better than those from state-of-the-art models(WGAN,WGAN-VGG,and SMGAN)and converged to a stable equilibrium compared with WGAN and *** proposed models are effective in reducing noise,suppressing artifacts,and maintaining informative structure and texture details,especially WGAN-VGG-SSL which achieved a high peak-signalto-noise ratio(PNSR)on both GPU(26.1336)and CPU(25.8270).The average accuracy of WGAN-VGG-SSL outperformed that of the state-ofthe-art methods by 1 *** prove that theWGAN-VGG-SSL is more stable than the other models on both GPU and CPU.
In the enormous field of Natural Language Processing (NLP), deciphering the intended significance of a word among a multitude of possibilities is referred to as word sense disambiguation. This process is essential for...
详细信息
Acute Bilirubin Encephalopathy(ABE)is a significant threat to neonates and it leads to disability and high mortality *** and treating ABE promptly is important to prevent further complications and long-term *** studie...
详细信息
Acute Bilirubin Encephalopathy(ABE)is a significant threat to neonates and it leads to disability and high mortality *** and treating ABE promptly is important to prevent further complications and long-term *** studies have explored ABE ***,they often face limitations in classification due to reliance on a single modality of Magnetic Resonance Imaging(MRI).To tackle this problem,the authors propose a Tri-M2MT model for precise ABE detection by using tri-modality MRI *** scans include T1-weighted imaging(T1WI),T2-weighted imaging(T2WI),and apparent diffusion coefficient maps to get indepth ***,the tri-modality MRI scans are collected and preprocessesed by using an Advanced Gaussian Filter for noise reduction and Z-score normalisation for data *** Advanced Capsule Network was utilised to extract relevant features by using Snake Optimization Algorithm to select optimal features based on feature correlation with the aim of minimising complexity and enhancing detection ***,a multi-transformer approach was used for feature fusion and identify feature correlations ***,accurate ABE diagnosis is achieved through the utilisation of a SoftMax *** performance of the proposed Tri-M2MT model is evaluated across various metrics,including accuracy,specificity,sensitivity,F1-score,and ROC curve analysis,and the proposed methodology provides better performance compared to existing methodologies.
The Internet of Things(IoT)has taken the interconnected world by *** to their immense applicability,IoT devices are being scaled at exponential proportions ***,very little focus has been given to securing such *** the...
详细信息
The Internet of Things(IoT)has taken the interconnected world by *** to their immense applicability,IoT devices are being scaled at exponential proportions ***,very little focus has been given to securing such *** these devices are constrained in numerous aspects,it leaves network designers and administrators with no choice but to deploy them with minimal or no security at *** have seen distributed denial-ofservice attacks being raised using such devices during the infamous Mirai botnet attack in *** we propose a lightweight authentication protocol to provide proper access to such *** have considered several aspects while designing our authentication protocol,such as scalability,movement,user registration,device registration,*** define the architecture we used a three-layered model consisting of cloud,fog,and edge *** have also proposed several pre-existing cipher suites based on post-quantum cryptography for evaluation and *** also provide a fail-safe mechanism for a situation where an authenticating server might fail,and the deployed IoT devices can self-organize to keep providing services with no human *** find that our protocol works the fastest when using ring learning with *** prove the safety of our authentication protocol using the automated validation of Internet security protocols and applications *** conclusion,we propose a safe,hybrid,and fast authentication protocol for authenticating IoT devices in a fog computing environment.
The rapid proliferation of Internet of Things (IoT) devices with sensing, monitoring, and control capabilities has fueled the emergence of diverse real-time IoT applications. These applications often require the effic...
详细信息
In this work, VoteDroid a novel fine-tuned deep learning models-based ensemble voting classifier has been proposed for detecting malicious behavior in Android applications. To this end, we proposed adopting the random...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
Effective management of electricity consumption (EC) in smart buildings (SBs) is crucial for optimizing operational efficiency, cost savings, and ensuring sustainable resource utilization. Accurate EC prediction enabl...
详细信息
Sentiment analysis plays an important role in distilling and clarifying content from movie reviews,aiding the audience in understanding universal views towards the ***,the abundance of reviews and the risk of encounte...
详细信息
Sentiment analysis plays an important role in distilling and clarifying content from movie reviews,aiding the audience in understanding universal views towards the ***,the abundance of reviews and the risk of encountering spoilers pose challenges for efcient sentiment analysis,particularly in Arabic *** study proposed a Stochastic Gradient Descent(SGD)machine learning(ML)model tailored for sentiment analysis in Arabic and English movie *** allows for fexible model complexity adjustments,which can adapt well to the Involvement of Arabic language *** adaptability ensures that the model can capture the nuances and specifc local patterns of Arabic text,leading to better *** distinct language datasets were utilized,and extensive pre-processing steps were employed to optimize the datasets for *** proposed SGD model,designed to accommodate the nuances of each language,aims to surpass existing models in terms of accuracy and *** SGD model achieves an accuracy of 84.89 on the Arabic dataset and 87.44 on the English dataset,making it the top-performing model in terms of accuracy on both *** indicates that the SGD model consistently demonstrates high accuracy levels across Arabic and English *** study helps deepen the understanding of sentiments across various linguistic *** many studies that focus solely on movie reviews,the Arabic dataset utilized here includes hotel reviews,ofering a broader perspective.
暂无评论