Dear Editor,The distributed constraint optimization problems(DCOPs) [1]-[3]provide an efficient model for solving the cooperative problems of multi-agent systems, which has been successfully applied to model the real-...
Dear Editor,The distributed constraint optimization problems(DCOPs) [1]-[3]provide an efficient model for solving the cooperative problems of multi-agent systems, which has been successfully applied to model the real-world problems like the distributed scheduling [4], sensor network management [5], [6], multi-robot coordination [7], and smart grid [8]. However, DCOPs were not well suited to solve the problems with continuous variables and constraint cost in functional form, such as the target tracking sensor orientation [9], the air and ground cooperative surveillance [10], and the sensor network coverage [11].
Privacy-preserving k-nearest neighbor (PPkNN) classification for multiple clouds enables categorizing queried data into a class in keeping with data privacy, where the database and key servers jointly perform cryptogr...
详细信息
Electrolysis tanks are used to smeltmetals based on electrochemical principles,and the short-circuiting of the pole plates in the tanks in the production process will lead to high temperatures,thus affecting normal **...
详细信息
Electrolysis tanks are used to smeltmetals based on electrochemical principles,and the short-circuiting of the pole plates in the tanks in the production process will lead to high temperatures,thus affecting normal *** at the problems of time-consuming and poor accuracy of existing infrared methods for high-temperature detection of dense pole plates in electrolysis tanks,an infrared dense pole plate anomalous target detection network YOLOv5-RMF based on You Only Look Once version 5(YOLOv5)is ***,we modified the Real-Time Enhanced Super-Resolution Generative Adversarial Network(Real-ESRGAN)by changing the U-shaped network(U-Net)to Attention U-Net,to preprocess the images;secondly,we propose a new Focus module that introduces the Marr operator,which can provide more boundary information for the network;again,because Complete Intersection over Union(CIOU)cannot accommodate target borders that are increasing and decreasing,replace CIOU with Extended Intersection over Union(EIOU),while the loss function is changed to Focal and Efficient IOU(Focal-EIOU)due to the different difficulty of sample *** the homemade dataset,the precision of our method is 94%,the recall is 70.8%,and the map@.5 is 83.6%,which is an improvement of 1.3%in precision,9.7%in recall,and 7%in map@.5 over the original *** algorithm can meet the needs of electrolysis tank pole plate abnormal temperature detection,which can lay a technical foundation for improving production efficiency and reducing production waste.
Voice pathology detection (VPD) aims to accurately identify voice impairments by analyzing speech signals. This study proposes models based on deep learning (DL) for binary classification to distinguish between health...
详细信息
This paper presents a novel approach for generating intricate Batik motifs using a modified Diffusion-Generative Adversarial Network (Diffusion-GAN) augmented with StyleGAN2-Ada. Motivated by the rich cultural heritag...
详细信息
Nowadays, the Internet of Things (IoT) plays a significant role in the development of various real-life applications such as smart cities, healthcare, precision agriculture, and industrial automation. Wireless Sensor ...
详细信息
Ecological validity remains essential for generalizing scientific research into real-world applications. However, current methods for crowd emotion detection lack ecological validity due to limited diversity samples i...
详细信息
Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder that affects millions worldwide. Early and accurate diagnosis is crucial for timely intervention and management, as it can significantly improve p...
详细信息
This study investigates a safe reinforcement learning algorithm for grid-forming(GFM)inverter based frequency *** guarantee the stability of the inverter-based resource(IBR)system under the learned control policy,a mo...
详细信息
This study investigates a safe reinforcement learning algorithm for grid-forming(GFM)inverter based frequency *** guarantee the stability of the inverter-based resource(IBR)system under the learned control policy,a modelbased reinforcement learning(MBRL)algorithm is combined with Lyapunov approach,which determines the safe region of states and *** obtain near optimal control policy,the control performance is safely improved by approximate dynamic programming(ADP)using data sampled from the region of attraction(ROA).Moreover,to enhance the control robustness against parameter uncertainty in the inverter,a Gaussian process(GP)model is adopted by the proposed algorithm to effectively learn system dynamics from *** simulations validate the effectiveness of the proposed algorithm.
The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the...
详细信息
The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the selection of appropriate routing protocols, which is crucial for maintaining high Quality of Service (QoS). The Internet engineering Task Force’s Routing Over Low Power and Lossy Networks (IETF ROLL) working group developed the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) to meet these needs. While the initial RPL standard focused on single-metric route selection, ongoing research explores enhancing RPL by incorporating multiple routing metrics and developing new Objective Functions (OFs). This paper introduces a novel Objective Function (OF), the Reliable and Secure Objective Function (RSOF), designed to enhance the reliability and trustworthiness of parent selection at both the node and link levels within IoT and RPL routing protocols. The RSOF employs an adaptive parent node selection mechanism that incorporates multiple metrics, including Residual Energy (RE), Expected Transmission Count (ETX), Extended RPL Node Trustworthiness (ERNT), and a novel metric that measures node failure rate (NFR). In this mechanism, nodes with a high NFR are excluded from the parent selection process to improve network reliability and stability. The proposed RSOF was evaluated using random and grid topologies in the Cooja Simulator, with tests conducted across small, medium, and large-scale networks to examine the impact of varying node densities. The simulation results indicate a significant improvement in network performance, particularly in terms of average latency, packet acknowledgment ratio (PAR), packet delivery ratio (PDR), and Control Message Overhead (CMO), compared to the standard Minimum Rank with Hysteresis Objective Function (MRHOF).
暂无评论