咨询与建议

限定检索结果

文献类型

  • 585 篇 会议
  • 513 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 1,100 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 658 篇 工学
    • 498 篇 计算机科学与技术...
    • 429 篇 软件工程
    • 139 篇 生物工程
    • 124 篇 信息与通信工程
    • 104 篇 生物医学工程(可授...
    • 90 篇 控制科学与工程
    • 49 篇 电气工程
    • 46 篇 光学工程
    • 37 篇 安全科学与工程
    • 36 篇 机械工程
    • 35 篇 电子科学与技术(可...
    • 30 篇 动力工程及工程热...
    • 26 篇 化学工程与技术
    • 26 篇 交通运输工程
    • 24 篇 仪器科学与技术
  • 437 篇 理学
    • 234 篇 数学
    • 161 篇 生物学
    • 109 篇 统计学(可授理学、...
    • 69 篇 物理学
    • 68 篇 系统科学
    • 38 篇 化学
  • 222 篇 管理学
    • 113 篇 图书情报与档案管...
    • 108 篇 管理科学与工程(可...
    • 62 篇 工商管理
  • 119 篇 医学
    • 102 篇 临床医学
    • 94 篇 基础医学(可授医学...
    • 59 篇 公共卫生与预防医...
    • 48 篇 药学(可授医学、理...
  • 41 篇 法学
    • 39 篇 社会学
  • 30 篇 农学
  • 25 篇 经济学
    • 25 篇 应用经济学
  • 17 篇 教育学
  • 2 篇 文学

主题

  • 51 篇 machine learning
  • 40 篇 accuracy
  • 32 篇 deep learning
  • 25 篇 convolutional ne...
  • 23 篇 data models
  • 22 篇 data mining
  • 22 篇 predictive model...
  • 21 篇 feature extracti...
  • 21 篇 training
  • 20 篇 artificial intel...
  • 19 篇 support vector m...
  • 19 篇 machine learning...
  • 19 篇 forecasting
  • 18 篇 internet of thin...
  • 18 篇 security
  • 17 篇 computational mo...
  • 15 篇 decision making
  • 14 篇 technological in...
  • 13 篇 neural networks
  • 13 篇 optimization

机构

  • 23 篇 insight centre f...
  • 15 篇 insight centre f...
  • 14 篇 department of el...
  • 12 篇 insight centre f...
  • 12 篇 department of el...
  • 11 篇 translational da...
  • 10 篇 department of co...
  • 9 篇 department of co...
  • 9 篇 data analytics l...
  • 9 篇 centre for data ...
  • 9 篇 department of bi...
  • 9 篇 department of st...
  • 7 篇 virginia commonw...
  • 7 篇 department of co...
  • 7 篇 data science and...
  • 6 篇 faculty of biosc...
  • 6 篇 department of co...
  • 6 篇 data analytics d...
  • 6 篇 data science and...
  • 6 篇 department of co...

作者

  • 18 篇 ning xia
  • 15 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 13 篇 damminda alahako...
  • 13 篇 o'sullivan barry
  • 12 篇 peng bo
  • 12 篇 alahakoon dammin...
  • 12 篇 malathi p.
  • 12 篇 karray fakhri
  • 12 篇 crowley mark
  • 11 篇 daswin de silva
  • 10 篇 hewahi nabil
  • 10 篇 curry edward
  • 10 篇 alsamhi saeed ha...
  • 10 篇 p. malathi
  • 10 篇 mukherjee sayan
  • 9 篇 milos manic
  • 9 篇 tanzila saba
  • 9 篇 wallace richard ...
  • 9 篇 chakravarthi bha...

语言

  • 826 篇 英文
  • 272 篇 其他
  • 7 篇 中文
  • 1 篇 斯洛文尼亚文
检索条件"机构=Department of Computer Science with Data Analytics"
1100 条 记 录,以下是671-680 订阅
排序:
Restricted Boltzmann Machine and Deep Belief Network: Tutorial and Survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on Boltzmann Machine (BM), Restricted Boltzmann Machine (RBM), and Deep Belief Network (DBN). We start with the required background on probabilistic graphical models, Markov random ... 详细信息
来源: 评论
Factor Analysis, Probabilistic Principal Component Analysis, Variational Inference, and Variational Autoencoder: Tutorial and Survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on factor analysis, probabilistic Principal Component Analysis (PCA), variational inference, and Variational Autoencoder (VAE). These methods, which are tightly related, are dimensi... 详细信息
来源: 评论
Generative Adversarial Networks and adversarial autoencoders: Tutorial and survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on Generative Adversarial Network (GAN), adversarial autoencoders, and their variants. We start with explaining adversarial learning and the vanilla GAN. Then, we explain the condit... 详细信息
来源: 评论
Sufficient dimension reduction for high-dimensional regression and low-dimensional embedding: tutorial and survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science & David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on various methods for Sufficient Dimension Reduction (SDR). We cover these methods with both statistical high-dimensional regression perspective and machine learning approach for d... 详细信息
来源: 评论
KKT conditions, first-order and second-order optimization, and distributed optimization: Tutorial and survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science & David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on Karush-Kuhn-Tucker (KKT) conditions, first-order and second-order numerical optimization, and distributed optimization. After a brief review of history of optimization, we start ... 详细信息
来源: 评论
SecEdge: A novel deep learning framework for real-time cybersecurity in mobile IoT environments
收藏 引用
Heliyon 2025年 第1期11卷 e40874页
作者: Awan, Kamran Ahmad Ud Din, Ikram Almogren, Ahmad Nawaz, Ali Khan, Muhammad Yasar Altameem, Ayman Department of Information Technology The University of Haripur Khyber Pakhtunkhwa Haripur 22620 Pakistan Department of Computer Science College of Computer and Information Sciences King Saud University Riyadh 11633 Saudi Arabia College of Information Technology United Arab Emirates University Al Ain 15551 United Arab Emirates SFI-Funded E-Governance Unit Insight Centre for Data Analytics University of Galway Galway H91 CF50 Ireland Department of Natural and Engineering Sciences College of Applied Studies and Community Services King Saud University Riyadh 11633 Saudi Arabia
The rapid growth of Internet of Things (IoT) devices presents significant cybersecurity challenges due to their diverse and resource-constrained nature. Existing security solutions often fall short in addressing the d... 详细信息
来源: 评论
Johnson-lindenstrauss lemma, linear and nonlinear random projections, random fourier features, and random kitchen sinks: Tutorial and survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science & David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on the Johnson-Lindenstrauss (JL) lemma and linear and nonlinear random projections. We start with linear random projection and then justify its correctness by JL lemma and its proo... 详细信息
来源: 评论
Uniform manifold approximation and projection (UMAP) and its variants: Tutorial and survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
Uniform Manifold Approximation and Projection (UMAP) is one of the state-of-the-art methods for dimensionality reduction and data visualization. This is a tutorial and survey paper on UMAP and its variants. We start w... 详细信息
来源: 评论
Laplacian-Based Dimensionality Reduction Including Spectral Clustering, Laplacian Eigenmap, Locality Preserving Projection, Graph Embedding, and Diffusion Map: Tutorial and Survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper for nonlinear dimensionality and feature extraction methods which are based on the Laplacian of graph of data. We first introduce adjacency matrix, definition of Laplacian matrix, a... 详细信息
来源: 评论
Unified Framework for Spectral Dimensionality Reduction, Maximum Variance Unfolding, and Kernel Learning By Semidefinite Programming: Tutorial and Survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on unification of spectral dimensionality reduction methods, kernel learning by Semidefinite Programming (SDP), Maximum Variance Unfolding (MVU) or Semidefinite Embedding (SDE), and... 详细信息
来源: 评论