咨询与建议

限定检索结果

文献类型

  • 573 篇 会议
  • 504 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 1,079 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 647 篇 工学
    • 488 篇 计算机科学与技术...
    • 424 篇 软件工程
    • 139 篇 生物工程
    • 121 篇 信息与通信工程
    • 104 篇 生物医学工程(可授...
    • 88 篇 控制科学与工程
    • 49 篇 电气工程
    • 45 篇 光学工程
    • 36 篇 安全科学与工程
    • 34 篇 机械工程
    • 34 篇 电子科学与技术(可...
    • 27 篇 动力工程及工程热...
    • 27 篇 交通运输工程
    • 26 篇 化学工程与技术
    • 24 篇 仪器科学与技术
  • 430 篇 理学
    • 231 篇 数学
    • 160 篇 生物学
    • 109 篇 统计学(可授理学、...
    • 68 篇 系统科学
    • 67 篇 物理学
    • 38 篇 化学
  • 215 篇 管理学
    • 110 篇 图书情报与档案管...
    • 105 篇 管理科学与工程(可...
    • 61 篇 工商管理
  • 112 篇 医学
    • 96 篇 临床医学
    • 88 篇 基础医学(可授医学...
    • 55 篇 公共卫生与预防医...
    • 48 篇 药学(可授医学、理...
  • 39 篇 法学
    • 37 篇 社会学
  • 29 篇 农学
  • 24 篇 经济学
    • 24 篇 应用经济学
  • 17 篇 教育学
  • 2 篇 文学

主题

  • 50 篇 machine learning
  • 38 篇 accuracy
  • 31 篇 deep learning
  • 23 篇 data models
  • 22 篇 data mining
  • 22 篇 predictive model...
  • 22 篇 feature extracti...
  • 22 篇 convolutional ne...
  • 21 篇 training
  • 20 篇 artificial intel...
  • 19 篇 machine learning...
  • 18 篇 internet of thin...
  • 18 篇 support vector m...
  • 18 篇 forecasting
  • 17 篇 computational mo...
  • 17 篇 security
  • 15 篇 decision making
  • 13 篇 neural networks
  • 13 篇 real-time system...
  • 13 篇 semantics

机构

  • 23 篇 insight centre f...
  • 15 篇 insight centre f...
  • 14 篇 department of el...
  • 12 篇 insight centre f...
  • 12 篇 department of el...
  • 10 篇 translational da...
  • 9 篇 department of co...
  • 9 篇 department of co...
  • 9 篇 data analytics l...
  • 9 篇 centre for data ...
  • 9 篇 department of st...
  • 7 篇 virginia commonw...
  • 7 篇 department of co...
  • 7 篇 department of bi...
  • 7 篇 data science and...
  • 6 篇 faculty of biosc...
  • 6 篇 department of co...
  • 6 篇 data analytics d...
  • 6 篇 data science and...
  • 6 篇 department of co...

作者

  • 16 篇 ning xia
  • 15 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 13 篇 damminda alahako...
  • 13 篇 o'sullivan barry
  • 12 篇 alahakoon dammin...
  • 12 篇 alsamhi saeed ha...
  • 12 篇 malathi p.
  • 12 篇 karray fakhri
  • 12 篇 crowley mark
  • 11 篇 peng bo
  • 11 篇 daswin de silva
  • 10 篇 hewahi nabil
  • 10 篇 p. malathi
  • 10 篇 mukherjee sayan
  • 9 篇 milos manic
  • 9 篇 curry edward
  • 9 篇 tanzila saba
  • 9 篇 wallace richard ...
  • 9 篇 chakravarthi bha...

语言

  • 988 篇 英文
  • 89 篇 其他
  • 3 篇 中文
  • 1 篇 斯洛文尼亚文
检索条件"机构=Department of Computer Science with Data Analytics"
1079 条 记 录,以下是911-920 订阅
排序:
Machine Learning methods to estimate observational properties of galaxy clusters in large volume cosmological N-body simulations
arXiv
收藏 引用
arXiv 2022年
作者: de Andres, Daniel Yepes, Gustavo Sembolini, Federico Martínez-Muñoz, Gonzalo Cui, Weiguang Robledo, Francisco Chuang, Chia-Hsun Rasia, Elena Departamento de Física Teórica Universidad Autónoma de Madrid M-8 Cantoblanco Madrid28049 Spain Universidad Autónoma de Madrid Cantoblanco Madrid28049 Spain Equifax Ibérica Data & Analytics Paseo de la Castellana Madrid259D Spain Computer Science Department Escuela Politécnica Superior Universidad Autónoma de Madrid Cantoblanco28049 Spain Institute for Astronomy University of Edinburgh Royal Observatory EdinburghEH9 3HJ United Kingdom Departamento de Fundamentos del Análisis Económico II Universidad del País Vasco Euskal Herriko Unibertsitatea Barrio Sarriena s/n Bizkaia Leioa48940 Spain Laboratoire de Mathématiques et de leurs Applications Université de Pau et des Pays de l’Adour Avenue de l’Université BP 576 Pau64012 France Department of Physics and Astronomy University of Utah Salt Lake CityUT84112 United States Kavli Institute for Particle Astrophysics and Cosmology Stanford University 452 Lomita Mall StanfordCA94305 United States INAF - Osservatorio Astronomico Trieste via Tiepolo 11 34123 Trieste34123 Italy Institute of Fundamental Physics of the Universe via Beirut 2 Grignano Trieste34151 Italy
In this paper we study the applicability of a set of supervised machine learning (ML) models specifically trained to infer observed related properties of the baryonic component (stars and gas) from a set of features o... 详细信息
来源: 评论
Ontology-based automatic reclassification of tissues and organs in histological images  12
Ontology-based automatic reclassification of tissues and org...
收藏 引用
12th Alberto Mendelzon International Workshop on Foundations of data Management, AMW 2018
作者: Mazo, Claudia Trujillo, Maria Alegre, Enrique Salazar, Liliana Universidad Del Valle Computer and Systems Engineering School Cali Colombia University College Dublin CeADAR: Centre for Applied Data Analytics Research School of Computer Science I-Dublin Ireland OncoMark Limited I-Dublin Ireland Universidad de León Industrial and Informatics Engineering School León Spain Universidad Del Valle Morphology Department Cali Colombia
Heterogeneous data source produces different types of data that cannot be treated in the same way. In this paper, two sources of data are considered: image and human knowledge. The former is rep-resented using visual ... 详细信息
来源: 评论
Method and systemfor image analysis to detect cancer
arXiv
收藏 引用
arXiv 2019年
作者: Yousef, Waleed A. Abouelkahire, Ahmed A. Almahallawi, Deyaaeldeen Smarzouk, Omar Kmohamed, Sameh Amustafa, Waleed Osamag, Omarm Saleh, Ali A. Abdelrazek, Naglaam Computer Science Department Faculty of Computers and Information Helwan University Egypt Egypt Senior Data Scientist TeraData Egypt School of Informatics and Computing Indiana University Bloomington United States Sweden Insight Center for Data Analytics National University of Ireland Ireland Department of Informatics University of Hamburg Germany Mesc for Research and Development Egypt Hamburg University Germany Faculty OfMedicine Alfa Scan Radiology Center Cairo University Quality ControlManager Quality ControlManager at National Screening Campaign Egypt
Breast cancer is the most common cancer and is the leading cause of cancer death among women worldwide. Detection of breast cancer, while it is still small and confined to the breast, provides the best chance of effec... 详细信息
来源: 评论
Metadata Concepts for Advancing the Use of Digital Health Technologies in Clinical Research
收藏 引用
Digital Biomarkers 2019年 第3期3卷 116-132页
作者: Badawy, Reham Hameed, Farhan Bataille, Lauren Little, Max A. Claes, Kasper Saria, Suchi Cedarbaum, Jesse M. Stephenson, Diane Neville, Jon Maetzler, Walter Espay, Alberto J. Bloem, Bastiaan R. Simuni, Tanya Karlin, Daniel R. School of Computer Science University of Birmingham Birmingham United Kingdom Digital Medicine and Pfizer Innovation Research Lab Early Clinical Development Pfizer Inc. CambridgeMA United States College of Computer and Information Science Northeastern University BostonMA United States Analytics Informatics and Business Intelligence Chief Digital Office Pfizer Inc. New YorkNY United States Michael J. Fox Foundation for Parkinson's Research New YorkNY United States Media Lab Massachusetts Institute of Technology CambridgeMA United States UCB Biopharma Brussels Belgium Machine Learning and Healthcare Laboratory Departments of Computer Science Statistics and Health Policy Malone Center for Engineering in Healthcare Armstrong Institute for Patient Safety and Quality Johns Hopkins University BaltimoreMD United States Biogen CambridgeMA United States Critical Path Institute TucsonAZ United States Clinical Data Interchange Standards Consortium AustinTX United States Department of Neurology Christian Albrecht University Kiel Germany James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders University of Cincinnati CincinnatiOH United States Department of Neurology Donders Institute for Brain Cognition and Behavior Radboud University Medical Center Nijmegen Netherlands Department of Neurology Gardner Center for Parkinson's Disease and Movement Disorders UC Gardner Neuroscience Institute University of Cincinnati CincinnatiOH United States Tufts University School of Medicine BostonMA United States HealthMode New YorkNY United States School of Engineering and Applied Science Aston University BirminghamB47ET United Kingdom
Digital health technologies (smartphones, smartwatches, and other body-worn sensors) can act as novel tools to aid in the diagnosis and remote objective monitoring of an individual's disease symptoms, both in clin... 详细信息
来源: 评论
An automated system for epilepsy detection using EEG brain signals based on deep learning approach
arXiv
收藏 引用
arXiv 2018年
作者: Ullah, Ihsan Hussain, Muhammad Qazi, Emad-Ul-Haq Aboalsamh, Hatim Insight Centre for Data Analytics National University of Ireland Galway Ireland Visual Computing Lab Department of Computer Science College of Computer andInformation Sciences King Saud University Riyadh Saudi Arabia
Epilepsy is a neurological disorder and for its detection, encephalography (EEG) is a commonly used clinical approach. Manual inspection of EEG brain signals is a time-consuming and laborious process, which puts heavy... 详细信息
来源: 评论
OpenLORIS-Object: A dataset and benchmark towards lifelong object recognition
arXiv
收藏 引用
arXiv 2019年
作者: She, Qi Feng, Fan Hao, Xinyue Yang, Qihan Lan, Chuanlin Lomonaco, Vincenzo Shi, Xuesong Wang, Zhengwei Guo, Yao Zhang, Yimin Qiao, Fei Chan, Rosa H.M. Robot Innovation Lab Intel Labs Beijing China Department of Electrical Engineering City University of Hong Kong Hong Kong China Department of Electronic Engineering Tsinghua University Beijing China Beijing University of Posts and Telecommunications Beijing China Department of Computer Science and Engineering University of Bologna Bologna Italy Insight Centre for Data Analytics Dublin City University Ireland Hamlyn Centre for Robotic Surgery Imperial College London United Kingdom
The recent breakthroughs in computer vision have benefited from the availability of large representative datasets (e.g. ImageNet and COCO) for training. Yet, robotic vision poses unique challenges for applying visual ... 详细信息
来源: 评论
SemEval-2017 Task 5: Fine-Grained Sentiment Analysis on Financial Microblogs and News  11
SemEval-2017 Task 5: Fine-Grained Sentiment Analysis on Fina...
收藏 引用
11th International Workshop on Semantic Evaluations, SemEval 2017, co-located with the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017
作者: Cortis, Keith Freitas, André Daudert, Tobias Hürlimann, Manuela Zarrouk, Manel Handschuh, Siegfried Davis, Brian Department of Computer Science and Mathematics University of Passau Germany Insight Centre for Data Analytics National University of Ireland Galway Ireland
This paper discusses the "Fine-Grained Sentiment Analysis on Financial Microblogs and News" task as part of SemEval-2017, specifically under the "Detecting sentiment, humour, and truth" theme. This... 详细信息
来源: 评论
AI for the public sector: Opportunities and challenges of cross-sector collaboration
arXiv
收藏 引用
arXiv 2018年
作者: Mikhaylov, Slava Jankin Esteve, Marc Campion, Averill Institute for Analytics and Data Science School of Computer Science Electronic Engineering Department of Government University of Essex School of Public Policy University College London Department of Strategy and General Management ESADE Ramon Llull University
Public sector organisations are increasingly interested in using data science and artificial intelligence capabilities to deliver policy and generate efficiencies in high uncertainty environments. The long-term succes... 详细信息
来源: 评论
Biomedical image analysis competitions: The state of current participation practice
arXiv
收藏 引用
arXiv 2022年
作者: Eisenmann, Matthias Reinke, Annika Weru, Vivienn Tizabi, Minu Dietlinde Isensee, Fabian Adler, Tim J. Godau, Patrick Cheplygina, Veronika Kozubek, Michal Maier-Hein, Klaus Jäger, Paul F. Kopp-Schneider, Annette Maier-Hein, Lena Ali, Sharib Gupta, Anubha Kybic, Jan Noble, Alison de Solórzano, Carlos Ortiz Pachade, Samiksha Petitjean, Caroline Sage, Daniel Wei, Donglai Wilden, Elizabeth Alapatt, Deepak Andrearczyk, Vincent Baid, Ujjwal Bakas, Spyridon Balu, Niranjan Bano, Sophia Bawa, Vivek Singh Bernal, Jorge Bodenstedt, Sebastian Casella, Alessandro Choi, Jinwook Commowick, Olivier Daum, Marie Depeursinge, Adrien Dorent, Reuben Egger, Jan Eichhorn, Hannah Engelhardt, Sandy Ganz, Melanie Girard, Gabriel Hansen, Lasse Heinrich, Mattias Heller, Nicholas Hering, Alessa Huaulmé, Arnaud Kim, Hyunjeong Li, Hongwei Bran Landman, Bennett Li, Jianning Ma, Jun Martel, Anne Martín-Isla, Carlos Menze, Bjoern Nwoye, Chinedu Innocent Oreiller, Valentin Padoy, Nicolas Pati, Sarthak Payette, Kelly Sudre, Carole van Wijnen, Kimberlin Vardazaryan, Armine Vercauteren, Tom Wagner, Martin Wang, Chuanbo Yap, Moi Hoon Yu, Zeyun Yuan, Chun Zenk, Maximilian Zia, Aneeq Zimmerer, David Bao, Rina Choi, Chanyeol Cohen, Andrew Dzyubachyk, Oleh Galdran, Adrian Gan, Tianyuan Guo, Tianqi Gupta, Pradyumna Haithami, Mahmood Ho, Edward Jang, Ikbeom Li, Zhili Luo, Zhengbo Lux, Filip Makrogiannis, Sokratis Müller, Dominik Oh, Young-Tack Pang, Subeen Pape, Constantin Polat, Gorkem Reed, Charlotte Rosalie Ryu, Kanghyun Scherr, Tim Thambawita, Vajira Wang, Haoyu Wang, Xinliang Xu, Kele Yeh, Hung Yeo, Doyeob Yuan, Yixuan Zeng, Yan Zhao, Xin Abbing, Julian Adam, Jannes Adluru, Nagesh Agethen, Niklas Ahmed, Salman Al Khalil, Yasmina Alenyà, Mireia Alhoniemi, Esa An, Chengyang Arega, Tewodros Weldebirhan Avisdris, Netanell Aydogan, Dogu Baran Bai, Yingbin Calisto, Maria Baldeon Basaran, Berke Doga Beetz, Marcel Bian, Hao Blansit, Kevin Bloch, Louise Bohnsack, Robert Bosticardo, Sara Breen, Jack Brudfors, Mikael Brüngel, Raphael Cabezas, Mariano Cacciola, Alb Heidelberg Division of Intelligent Medical Systems Germany Heidelberg HI Helmholtz Imaging Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Heidelberg Division of Biostatistics Germany Heidelberg Division of Medical Image Computing Germany Heidelberg HI Applied Vision Lab Germany IT University of Copenhagen Copenhagen Denmark Centre for Biomedical Image Analysis Masaryk University Brno Czech Republic Heidelberg Interactive Machine Learning Group Germany Faculty of Mathematics and Computer Science and Medical Faculty Heidelberg University Heidelberg Germany NCT Heidelberg DKFZ University Hospital Heidelberg Germany School of Computing University of Leeds Leeds United Kingdom SBILab Department of ECE IIIT-Delhi India Faculty of Electrical Engineering Czech Technical University Prague Czech Republic Institute of Biomedical Engineering University of Oxford United Kingdom Center for Applied Medical Research Pamplona Spain Shri Guru Gobind Singhji Institute of Engineering and Technology Maharashtra Nanded India Université de Rouen Normandie France Lausanne Switzerland School of Engineering and Applied Science Harvard University United States ICube University of Strasbourg CNRS France Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Techno-Pôle 3 Sierre3960 Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Rue du Bugnon 46 LausanneCH-1011 Switzerland University of Pennsylvania PhiladelphiaPA United States Department of Radiology University of Washington United States Wellcome EPSRC Centre for Interventional and Surgical Sciences University College London London United Kingdom Visual Artificial Intelligence Lab Oxford Brookes University Oxford United Kingdom Universitat Autònoma de Barcelona & Computer Vision Center Spain Dresden Fetscherstraße 74 PF 64 Dresden01307 Germany
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bott... 详细信息
来源: 评论
The evolutionary history of 2,658 cancers (vol 578, pg 122, 2020)
收藏 引用
NATURE 2023年 第7948期614卷 E42-E42页
作者: Gerstung, Moritz Jolly, Clemency Leshchiner, Ignaty Dentro, Stefan C. Gonzalez, Santiago Rosebrock, Daniel Mitchell, Thomas J. Rubanova, Yulia Anur, Pavana Yu, Kaixian Tarabichi, Maxime Deshwar, Amit Wintersinger, Jeff Kleinheinz, Kortine Vazquez-Garcia, Ignacio Haase, Kerstin Jerman, Lara Sengupta, Subhajit Macintyre, Geoff Malikic, Salem Donmez, Nilgun Livitz, Dimitri G. Cmero, Marek Demeulemeester, Jonas Schumacher, Steven Fan, Yu Yao, Xiaotong Lee, Juhee Schlesner, Matthias Boutros, Paul C. Bowtell, David D. Zhu, Hongtu Getz, Gad Imielinski, Marcin Beroukhim, Rameen Sahinalp, S. Cenk Ji, Yuan Peifer, Martin Markowetz, Florian Mustonen, Ville Yuan, Ke Wang, Wenyi Morris, Quaid D. Spellman, Paul T. Wedge, David C. Van Loo, Peter European Molecular Biology Laboratory European Bioinformatics Institute (EMBL-EBI) Cambridge UK European Molecular Biology Laboratory Genome Biology Unit Heidelberg Germany Wellcome Sanger Institute Cambridge UK Genome Biology Unit European Molecular Biology Laboratory (EMBL) Heidelberg Germany University of Ljubljana Ljubljana Slovenia The Francis Crick Institute London UK Big Data Institute University of Oxford Oxford UK Wellcome Sanger Institute Wellcome Genome Campus Hinxton UK Big Data Institute Li Ka Shing Centre University of Oxford Oxford UK University of Cambridge Cambridge UK Cambridge University Hospitals NHS Foundation Trust Cambridge UK Department of Applied Mathematics and Theoretical Physics Centre for Mathematical Sciences University of Cambridge Cambridge UK Department of Epidemiology and Biostatistics Memorial Sloan Kettering Cancer Center New York NY USA Department of Statistics Columbia University New York NY USA Department of Haematology University of Cambridge Cambridge UK University of Leuven Leuven Belgium Broad Institute of MIT and Harvard Cambridge MA USA Center for Cancer Research Massachusetts General Hospital Charlestown MA USA Department of Pathology Massachusetts General Hospital Boston MA USA Harvard Medical School Boston MA USA Center for Cancer Research Massachusetts General Hospital Boston MA USA Dana-Farber Cancer Institute Boston MA USA Department of Medical Oncology Dana-Farber Cancer Institute Boston MA USA Department of Cancer Biology Dana-Farber Cancer Institute Boston MA USA Oxford NIHR Biomedical Research Centre Oxford UK Oxford NIHR Biomedical Research Centre University of Oxford Oxford UK University of Toronto Toronto Ontario Canada Vector Institute Toronto Ontario Canada Vector Institute Toronto ON Canada Department of Computer Science University of Toronto Toronto ON Canada Ontario Institute for Cancer Research Toronto Ontario Canada University of California Los Angeles
来源: 评论