This study proposes a malicious code detection model DTL-MD based on deep transfer learning, which aims to improve the detection accuracy of existing methods in complex malicious code and data scarcity. In the feature...
详细信息
Industrial cyber-physical systems closely integrate physical processes with cyberspace, enabling real-time exchange of various information about system dynamics, sensor outputs, and control decisions. The connection b...
详细信息
Industrial cyber-physical systems closely integrate physical processes with cyberspace, enabling real-time exchange of various information about system dynamics, sensor outputs, and control decisions. The connection between cyberspace and physical processes results in the exposure of industrial production information to unprecedented security risks. It is imperative to develop suitable strategies to ensure cyber security while meeting basic performance *** the perspective of control engineering, this review presents the most up-to-date results for privacy-preserving filtering,control, and optimization in industrial cyber-physical systems. Fashionable privacy-preserving strategies and mainstream evaluation metrics are first presented in a systematic manner for performance evaluation and engineering *** discussion discloses the impact of typical filtering algorithms on filtering performance, specifically for privacy-preserving Kalman filtering. Then, the latest development of industrial control is systematically investigated from consensus control of multi-agent systems, platoon control of autonomous vehicles as well as hierarchical control of power systems. The focus thereafter is on the latest privacy-preserving optimization algorithms in the framework of consensus and their applications in distributed economic dispatch issues and energy management of networked power systems. In the end, several topics for potential future research are highlighted.
In this paper,we propose a hybrid decode-and-forward and soft information relaying(HDFSIR)strategy to mitigate error propagation in coded cooperative *** the HDFSIR approach,the relay operates in decode-and-forward(DF...
详细信息
In this paper,we propose a hybrid decode-and-forward and soft information relaying(HDFSIR)strategy to mitigate error propagation in coded cooperative *** the HDFSIR approach,the relay operates in decode-and-forward(DF)mode when it successfully decodes the received message;otherwise,it switches to soft information relaying(SIR)*** benefits of the DF and SIR forwarding strategies are combined to achieve better performance than deploying the DF or SIR strategy ***-form expressions for the outage probability and symbol error rate(SER)are derived for coded cooperative communication with HDFSIR and energy-harvesting ***,we introduce a novel normalized log-likelihood-ratio based soft estimation symbol(NL-SES)mapping technique,which enhances soft symbol accuracy for higher-order modulation,and propose a model characterizing the relationship between the estimated complex soft symbol and the actual high-order modulated ***-more,the hybrid DF-SIR strategy is extended to a distributed Alamouti space-time-coded cooperative *** evaluate the~performance of the proposed HDFSIR strategy,we implement extensive Monte Carlo simulations under varying channel *** demonstrate significant improvements with the hybrid technique outperforming individual DF and SIR strategies in both conventional and distributed Alamouti space-time coded cooperative ***,at a SER of 10^(-3),the proposed NL-SES mapping demonstrated a 3.5 dB performance gain over the conventional averaging one,highlighting its superior accuracy in estimating soft symbols for quadrature phase-shift keying modulation.
Improving website security to prevent malicious online activities is crucial,and CAPTCHA(Completely Automated Public Turing test to tell computers and Humans Apart)has emerged as a key strategy for distinguishing huma...
详细信息
Improving website security to prevent malicious online activities is crucial,and CAPTCHA(Completely Automated Public Turing test to tell computers and Humans Apart)has emerged as a key strategy for distinguishing human users from automated ***-based CAPTCHAs,designed to be easily decipherable by humans yet challenging for machines,are a common form of this ***,advancements in deep learning have facilitated the creation of models adept at recognizing these text-based CAPTCHAs with surprising *** our comprehensive investigation into CAPTCHA recognition,we have tailored the renowned UpDown image captioning model specifically for this *** approach innovatively combines an encoder to extract both global and local features,significantly boosting the model’s capability to identify complex details within CAPTCHA *** the decoding phase,we have adopted a refined attention mechanism,integrating enhanced visual attention with dual layers of Long Short-Term Memory(LSTM)networks to elevate CAPTCHA recognition *** rigorous testing across four varied datasets,including those from Weibo,BoC,Gregwar,and Captcha 0.3,demonstrates the versatility and effectiveness of our *** results not only highlight the efficiency of our approach but also offer profound insights into its applicability across different CAPTCHA types,contributing to a deeper understanding of CAPTCHA recognition technology.
Federated Learning (FL) is vulnerable to backdoor attacks - especially distributed backdoor attacks (DBA) that are more persistent and stealthy than centralized backdoor attacks. However, we observe that the attack ef...
详细信息
In recent years, mental health issues have profoundly impacted individuals’ well-being, necessitating prompt identification and intervention. Existing approaches grapple with the complex nature of mental health, faci...
详细信息
In recent years, mental health issues have profoundly impacted individuals’ well-being, necessitating prompt identification and intervention. Existing approaches grapple with the complex nature of mental health, facing challenges like task interference, limited adaptability, and difficulty in capturing nuanced linguistic expressions indicative of various conditions. In response to these challenges, our research presents three novel models employing multi-task learning (MTL) to understand mental health behaviors comprehensively. These models encompass soft-parameter sharing-based long short-term memory with attention mechanism (SPS-LSTM-AM), SPS-based bidirectional gated neural networks with self-head attention mechanism (SPS-BiGRU-SAM), and SPS-based bidirectional neural network with multi-head attention mechanism (SPS-BNN-MHAM). Our models address diverse tasks, including detecting disorders such as bipolar disorder, insomnia, obsessive-compulsive disorder, and panic in psychiatric texts, alongside classifying suicide or non-suicide-related texts on social media as auxiliary tasks. Emotion detection in suicide notes, covering emotions of abuse, blame, and sorrow, serves as the main task. We observe significant performance enhancement in the primary task by incorporating auxiliary tasks. Advanced encoder-building techniques, including auto-regressive-based permutation and enhanced permutation language modeling, are recommended for effectively capturing mental health contexts’ subtleties, semantic nuances, and syntactic structures. We present the shared feature extractor called shared auto-regressive for language modeling (S-ARLM) to capture high-level representations that are useful across tasks. Additionally, we recommend soft-parameter sharing (SPS) subtypes-fully sharing, partial sharing, and independent layer-to minimize tight coupling and enhance adaptability. Our models exhibit outstanding performance across various datasets, achieving accuracies of 96.9%, 97.
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theo...
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theories and methodologies [2]. Instead of replacing existing software modules implemented by symbolic logic, incorporating FMs' capabilities to build software systems requires entirely new modules that leverage the unique capabilities of ***, while FMs excel at handling uncertainty, recognizing patterns, and processing unstructured data, we need new engineering theories that support the paradigm shift from explicitly programming and maintaining user-defined symbolic logic to creating rich, expressive requirements that FMs can accurately perceive and implement.
Cancer remains a leading cause of mortality worldwide, with early detection and accurate diagnosis critical to improving patient outcomes. While computer-aided diagnosis systems powered by deep learning have shown con...
详细信息
Synthetic data generation via Generative Artificial Intelligence (GenAI) is essential for enhancing cybersecurity and safeguarding privacy in the Internet of Medical Things (IoMT) and healthcare. We introduce Multi-Fe...
详细信息
Online shopping has become an integral part of modern consumer culture. Yet, it is plagued by challenges in visualizing clothing items based on textual descriptions and estimating their fit on individual body types. I...
详细信息
Online shopping has become an integral part of modern consumer culture. Yet, it is plagued by challenges in visualizing clothing items based on textual descriptions and estimating their fit on individual body types. In this work, we present an innovative solution to address these challenges through text-driven clothed human image synthesis with 3D human model estimation, leveraging the power of Vector Quantized Variational AutoEncoder (VQ-VAE). Creating diverse and high-quality human images is a crucial yet difficult undertaking in vision and graphics. With the wide variety of clothing designs and textures, existing generative models are often not sufficient for the end user. In this proposed work, we introduce a solution that is provided by various datasets passed through several models so the optimized solution can be provided along with high-quality images with a range of postures. We use two distinct procedures to create full-body 2D human photographs starting from a predetermined human posture. 1) The provided human pose is first converted to a human parsing map with some sentences that describe the shapes of clothing. 2) The model developed is then given further information about the textures of clothing as an input to produce the final human image. The model is split into two different sections the first one being a codebook at a coarse level that deals with overall results and a fine-level codebook that deals with minute detailing. As mentioned previously at fine level concentrates on the minutiae of textures, whereas the codebook at the coarse level covers the depictions of textures in structures. The decoder trained together with hierarchical codebooks converts the anticipated indices at various levels to human images. The created image can be dependent on the fine-grained text input thanks to the utilization of a blend of experts. The quality of clothing textures is refined by the forecast for finer-level indexes. Implementing these strategies can result
暂无评论