The inheritance of digital assets is a complex issue requiring various regulations. Individuals leave behind vast digital footprints, including sensitive information that needs careful management after death. The arti...
详细信息
The article considers an approach to 3D visualization of technological processes controlled by a software-implemented controller (SoftPLC). The technological process of automatic sorting of parts on the conveyor is co...
详细信息
Skin segmentation participates significantly in various biomedical applications,such as skin cancer identification and skin lesion *** paper presents a novel framework for segmenting the *** framework contains two mai...
详细信息
Skin segmentation participates significantly in various biomedical applications,such as skin cancer identification and skin lesion *** paper presents a novel framework for segmenting the *** framework contains two main stages:The first stage is for removing different types of noises from the dermoscopic images,such as hair,speckle,and impulse noise,and the second stage is for segmentation of the dermoscopic images using an attention residual U-shaped Network(U-Net).The framework uses variational Autoencoders(VAEs)for removing the hair noises,the Generative Adversarial Denoising Network(DGAN-Net),the Denoising U-shaped U-Net(D-U-NET),and Batch Renormalization U-Net(Br-U-NET)for remov-ing the speckle noise,and the Laplacian Vector Median Filter(MLVMF)for removing the impulse *** the second main stage,the residual attention u-net was used for *** framework achieves(35.11,31.26,27.01,and 26.16),(36.34,33.23,31.32,and 28.65),and(36.33,32.21,28.54,and 27.11)for removing hair,speckle,and impulse noise,respectively,based on Peak Signal Noise Ratio(PSNR)at the level of(0.1,0.25,0.5,and 0.75)of *** framework also achieves an accuracy of nearly 94.26 in the dice score in the process of segmentation before removing noise and 95.22 after removing different types of *** experiments have shown the efficiency of the used model in removing noise according to the structural similarity index measure(SSIM)and PSNR and in the segmentation process as well.
This paper focuses on the performance of equalizer zero-determinant(ZD)strategies in discounted repeated Stackelberg asymmetric *** the leader-follower adversarial scenario,the strong Stackelberg equilibrium(SSE)deriv...
详细信息
This paper focuses on the performance of equalizer zero-determinant(ZD)strategies in discounted repeated Stackelberg asymmetric *** the leader-follower adversarial scenario,the strong Stackelberg equilibrium(SSE)deriving from the opponents’best response(BR),is technically the optimal strategy for the ***,computing an SSE strategy may be difficult since it needs to solve a mixed-integer program and has exponential complexity in the number of *** this end,the authors propose an equalizer ZD strategy,which can unilaterally restrict the opponent’s expected *** authors first study the existence of an equalizer ZD strategy with one-to-one situations,and analyze an upper bound of its performance with the baseline SSE *** the authors turn to multi-player models,where there exists one player adopting an equalizer ZD *** authors give bounds of the weighted sum of opponents’s utilities,and compare it with the SSE ***,the authors give simulations on unmanned aerial vehicles(UAVs)and the moving target defense(MTD)to verify the effectiveness of the proposed approach.
Electric Vehicles (EVs) become very important issue and gained attention due to many reasons like its economic price, saving environment and more reliable. In this study, controlling speed for EV is utilized by tracki...
详细信息
Pneumonia is one of the top causes of death in Romania and early detection of this disease improves the recovery chances and shortens the length of hospitalization. In this work, we develop a solution for automatic pn...
详细信息
The survival rate of lung cancer relies significantly on how far the disease has spread when it is detected, how it reacts to the treatment, the patient’s overall health, and other factors. Therefore, the earlier the...
详细信息
The survival rate of lung cancer relies significantly on how far the disease has spread when it is detected, how it reacts to the treatment, the patient’s overall health, and other factors. Therefore, the earlier the lung cancer diagnosis, the higher the survival rate. For radiologists, recognizing malignant lung nodules from computed tomography (CT) scans is a challenging and time-consuming process. As a result, computer-aided diagnosis (CAD) systems have been suggested to alleviate these burdens. Deep-learning approaches have demonstrated remarkable results in recent years, surpassing traditional methods in different fields. Researchers are currently experimenting with several deep-learning strategies to increase the effectiveness of CAD systems in lung cancer detection with CT. This work proposes a deep-learning framework for detecting and diagnosing lung cancer. The proposed framework used recent deep-learning techniques in all its layers. The autoencoder technique structure is tuned and used in the preprocessing stage to denoise and reconstruct the medical lung cancer dataset. Besides, it depends on the transfer learning pre-trained models to make multi-classification among different lung cancer cases such as benign, adenocarcinoma, and squamous cell carcinoma. The proposed model provides high performance while recognizing and differentiating between two types of datasets, including biopsy and CT scans. The Cancer Imaging Archive and Kaggle datasets are utilized to train and test the proposed model. The empirical results show that the proposed framework performs well according to various performance metrics. According to accuracy, precision, recall, F1-score, and AUC metrics, it achieves 99.60, 99.61, 99.62, 99.70, and 99.75%, respectively. Also, it depicts 0.0028, 0.0026, and 0.0507 in mean absolute error, mean squared error, and root mean square error metrics. Furthermore, it helps physicians effectively diagnose lung cancer in its early stages and allows spe
A model of a two-level hierarchical system with many participants is studied assuming that lower-level elements choose Pareto optimal outcomes. Two classes of games are studied: without feedback and with feedback. The...
详细信息
Thepaper deals with a formalized description of a computer-aided crop rotation engineering system based on a mathematical crop system optimization model implemented in the digital platform for industry management that...
详细信息
Personnel selection for software projects is about finding people who are ready to work in conditions of extreme uncertainty. Therefore, the extreme uncertainty in the selection of personnel must be mitigated primaril...
详细信息
暂无评论