A more advanced deep learning architecture that aims to improve in situ driver safety by perceiving the driving behavior and monitoring the surrounding road environment will be proposed in this study. It will employ d...
详细信息
Educational institutions frequently suffer from inefficiencies in decision-making, interdepartmental communication, and administrative procedures. In order to optimize resource allocation, automate procurement workflo...
详细信息
This research study proposes data-driven approaches to track and maintain prices of food products. It develops an all-inclusive database of market data based on real-time pricing information generated from reporting c...
详细信息
Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are v...
详细信息
Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are vital in facilitating end-user communication ***,the security of Android systems has been challenged by the sensitive data involved,leading to vulnerabilities in mobile devices used in 5G *** vulnerabilities expose mobile devices to cyber-attacks,primarily resulting from security ***-permission apps in Android can exploit these channels to access sensitive information,including user identities,login credentials,and geolocation *** such attack leverages"zero-permission"sensors like accelerometers and gyroscopes,enabling attackers to gather information about the smartphone's *** underscores the importance of fortifying mobile devices against potential future *** research focuses on a new recurrent neural network prediction model,which has proved highly effective for detecting side-channel attacks in mobile devices in 5G *** conducted state-of-the-art comparative studies to validate our experimental *** results demonstrate that even a small amount of training data can accurately recognize 37.5%of previously unseen user-typed ***,our tap detection mechanism achieves a 92%accuracy rate,a crucial factor for text *** findings have significant practical implications,as they reinforce mobile device security in 5G networks,enhancing user privacy,and data protection.
The advancements in modern computing technologies have significantly contributed to the development of advanced healthcare monitoring systems., enabling the early detection of critical conditions., such as falls. This...
详细信息
The growing adoption of social virtual reality (VR) platforms underscores the importance of safeguarding personal VR space to maintain user privacy and security. Teleportation, a prevalent instantaneous locomotion met...
详细信息
Managing fluctuating workloads and optimizing resource utilization in cloud environments pose significant challenges, particularly in fields requiring real-time data processing, such as healthcare. This paper introduc...
详细信息
Machine Learning Research often involves the use of diverse libraries, modules, and pseudocodes for data processing, cleaning, filtering, pattern recognition, and computer intelligence. Quantization of Effort Required...
详细信息
Predicting water quality is essential to preserving human health and environmental sustainability. Traditional water quality assessment methods often face scalability and real-time monitoring limitations. With accurac...
详细信息
Artificial Intelligence (AI) and the Internet of Things (IoT) are developing so fast that they can bring revolutionary changes in ecological sustainability, public health, and community welfare. In contrast, the prese...
详细信息
Artificial Intelligence (AI) and the Internet of Things (IoT) are developing so fast that they can bring revolutionary changes in ecological sustainability, public health, and community welfare. In contrast, the present waste management system has a set of inefficiencies due to some challenges, such as poor waste stream segregation, limited real-time data analysis, and negligible integration of recent technology. These challenges lead to environmental degradation, public health hazards, and inefficient usage of resources. This research targets these challenges by designing an IWM framework like AI-IoT for smart waste management. The system employs AI models powered by IoT sensors for efficient waste collection, classification, and optimization of recycling schedules. CNN (convolutional neural networks) with transfer learning enabled by Res-Net provides high-accuracy image recognition, which can be used for waste classification. Bidirectional Encoder Representations from Transformers (BERT) allow multilingual users to interact and communicate properly in any linguistic environment. Data collected from IoT-enabled smart bins is transmitted in real-time to a central control system for dynamic decision-making and follow-up analysis. A pilot exercise to verify the system's effectiveness was implemented in metropolitan settings to show the transformation: landfill dependency was decreased by 30 %, recycling efficiency was greatly increased to 90 %, and thus the cost of waste management was optimized. At the same time, environmental health inequity, causing pathogen-related threats, was reduced by 35 %. The model has an accuracy of 96.8 %. The features of the proposed framework not only provide solutions to the existing inefficiencies but also enhance scalability, cost-effectiveness, and global environmental standardization. This dawns the futuristic growth of AI- and IoT-enabled waste management systems, which hinge on sustainability, public health, and resource efficienc
暂无评论