咨询与建议

限定检索结果

文献类型

  • 57 篇 期刊文献
  • 16 篇 会议

馆藏范围

  • 73 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 55 篇 工学
    • 39 篇 计算机科学与技术...
    • 38 篇 软件工程
    • 22 篇 生物工程
    • 20 篇 光学工程
    • 16 篇 生物医学工程(可授...
    • 13 篇 信息与通信工程
    • 6 篇 控制科学与工程
    • 4 篇 仪器科学与技术
    • 4 篇 电气工程
    • 4 篇 化学工程与技术
    • 3 篇 安全科学与工程
    • 2 篇 机械工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 环境科学与工程(可...
    • 2 篇 网络空间安全
  • 36 篇 理学
    • 22 篇 生物学
    • 11 篇 数学
    • 11 篇 物理学
    • 6 篇 统计学(可授理学、...
    • 4 篇 化学
    • 2 篇 系统科学
  • 19 篇 管理学
    • 13 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 12 篇 医学
    • 12 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 6 篇 公共卫生与预防医...
    • 4 篇 药学(可授医学、理...
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学

主题

  • 4 篇 image segmentati...
  • 4 篇 accuracy
  • 3 篇 deep learning
  • 3 篇 training
  • 2 篇 image enhancemen...
  • 2 篇 support vector m...
  • 2 篇 deep neural netw...
  • 2 篇 three-dimensiona...
  • 2 篇 diagnosis
  • 2 篇 benchmarking
  • 2 篇 embeddings
  • 2 篇 floods
  • 2 篇 linear transform...
  • 2 篇 computer vision
  • 2 篇 sensors
  • 1 篇 global positioni...
  • 1 篇 patient monitori...
  • 1 篇 lesions
  • 1 篇 mammography
  • 1 篇 object detection

机构

  • 4 篇 department of co...
  • 4 篇 department of co...
  • 3 篇 department of in...
  • 3 篇 fraunhofer mevis...
  • 3 篇 lausanne
  • 3 篇 centre for biome...
  • 3 篇 diagnostic image...
  • 3 篇 department of ma...
  • 3 篇 centre for visio...
  • 2 篇 university of sc...
  • 2 篇 universitat autò...
  • 2 篇 cibm center for ...
  • 2 篇 dementia researc...
  • 2 篇 department of nu...
  • 2 篇 department of co...
  • 2 篇 image processing...
  • 2 篇 universidad pomp...
  • 2 篇 department of ne...
  • 2 篇 university of be...
  • 2 篇 dynamic vision a...

作者

  • 6 篇 yaqub mohammad
  • 6 篇 reid ian
  • 6 篇 schiele bernt
  • 4 篇 saeed numan
  • 4 篇 rezatofighi hami...
  • 4 篇 ridzuan muhammad
  • 4 篇 carneiro gustavo
  • 3 篇 fischer jonas
  • 3 篇 roth stefan
  • 3 篇 böhle moritz
  • 3 篇 mohsen guizani
  • 3 篇 cremers daniel
  • 3 篇 weinmann andreas
  • 2 篇 gao zhenguo
  • 2 篇 wang yakai
  • 2 篇 galdran adrian
  • 2 篇 ahmed sharshar
  • 2 篇 zimmerer david
  • 2 篇 wu xiaoxiao
  • 2 篇 fritz mario

语言

  • 63 篇 英文
  • 10 篇 其他
检索条件"机构=Department of Computer Vision and Machine Learning"
73 条 记 录,以下是21-30 订阅
排序:
Sailing in high-dimensional spaces: Low-dimensional embeddings through angle preservation
arXiv
收藏 引用
arXiv 2024年
作者: Fischer, Jonas Ma, Rong Department for Computer Vision and Machine Learning Max Planck Institute for Informatics Saarbrücken Germany Department for Biostatistics Harvard University BostonMA United States
Low-dimensional embeddings (LDEs) of high-dimensional data are ubiquitous in science and engineering. They allow us to quickly understand the main properties of the data, identify outliers and processing errors, and i... 详细信息
来源: 评论
MRIShift: Disentangled Representation learning for 3D MRI Lesion Segmentation Under Distributional Shifts
MRIShift: Disentangled Representation Learning for 3D MRI Le...
收藏 引用
European Workshop on Visual Information Processing (EUVIP)
作者: Umaima Rahman Guangyi Chen Kun Zhang Computer Vision Department Mohamed Bin Zayed University of Artificial Intelligence Abu Dhabi UAE Machine Learning Department Carnegie Mellon University Pittsburgh PA USA
In the clinical environment, heterogeneity of data coming from different centers poses challenges where the data may not conform to the assumption of being independent and identically distributed (i.i.d). As a result,... 详细信息
来源: 评论
How to Choose a Reinforcement-learning Algorithm
arXiv
收藏 引用
arXiv 2024年
作者: Bongratz, Fabian Golkov, Vladimir Mautner, Lukas Libera, Luca Della Heetmeyer, Frederik Czaja, Felix Rodemann, Julian Cremers, Daniel Computer Vision Group Technical University of Munich Germany Munich Center for Machine Learning Germany Department of Statistics Ludwig-Maximilians-Universität Munich Germany
The field of reinforcement learning offers a large variety of concepts and methods to tackle sequential decision-making problems. This variety has become so large that choosing an algorithm for a task at hand can be c... 详细信息
来源: 评论
CVPR19 Tracking and Detection Challenge: How crowded can it get?
arXiv
收藏 引用
arXiv 2019年
作者: Dendorfer, Patrick Rezatofighi, Hamid Milan, Anton Shi, Javen Cremers, Daniel Reid, Ian Roth, Stefan Schindler, Konrad Leal-Taixa, Laura Dynamic Vision and Learning Group at Tum Munich Germany Australian Institute for Machine Learning and School of Computer Science at University of Adelaide. Amazon Berlin Germany Photogrammetry and Remote Sensing Group at Eth Zurich Switzerland Computer Vision Group at Tum Munich Germany Department of Computer Science Technische Universität Darmstadt Germany
Standardized benchmarks are crucial for the majority of computer vision applications. Although leaderboards and ranking tables should not be over-claimed, benchmarks often provide the most objective measure of perform... 详细信息
来源: 评论
MOT20: A benchmark for multi object tracking in crowded scenes
arXiv
收藏 引用
arXiv 2020年
作者: Dendorfer, Patrick Rezatofighi, Hamid Milan, Anton Shi, Javen Cremers, Daniel Reid, Ian Roth, Stefan Schindler, Konrad Leal-Taixé, Laura Dynamic Vision and Learning Group at TUM Munich Germany Australian Institute for Machine Learning School of Computer Science University of Adelaide Amazon Berlin Germany Photogrammetry and Remote Sensing Group ETH Zurich Switzerland Computer Vision Group at TUM Munich Germany Department of Computer Science Technische Universität Darmstadt Germany
Standardized benchmarks are crucial for the majority of computer vision applications. Although leaderboards and ranking tables should not be over-claimed, benchmarks often provide the most objective measure of perform... 详细信息
来源: 评论
Smoothing splines for discontinuous signals
arXiv
收藏 引用
arXiv 2022年
作者: Storath, Martin Weinmann, Andreas Lab for Mathematical Methods in Computer Vision and Machine Learning Technische Hochschule Würzburg-Schweinfurt Schweinfurt Germany Department of Mathematics and Natural Sciences Hochschule Darmstadt Darmstadt Germany
Smoothing splines are twice differentiable by construction, so they cannot capture potential discontinuities in the underlying signal. In this work, we consider a special case of the weak rod model of Blake and Zisser... 详细信息
来源: 评论
Optimising for Interpretability: Convolutional Dynamic Alignment Networks
arXiv
收藏 引用
arXiv 2021年
作者: Böhle, Moritz Fritz, Mario Schiele, Bernt The Department of Computer Vision and Machine Learning Max Planck Institute for Informatics Saarbrücken66123 Germany The CISPA Helmholtz Center for Information Security Saarbrücken66123 Germany
We introduce a new family of neural network models called Convolutional Dynamic Alignment Networks (CoDA Nets), which are performant classifiers with a high degree of inherent interpretability. Their core building blo... 详细信息
来源: 评论
Deep deterministic uncertainty for semantic segmentation
arXiv
收藏 引用
arXiv 2021年
作者: Mukhoti, Jishnu van Amersfoort, Joost Torr, Philip H.S. Gal, Yarin Oxford Applied & Theoretical Machine Learning Group Department of Computer Science University of Oxford Oxford United Kingdom Torr Vision Group Department of Engineering Science University of Oxford Oxford United Kingdom
We extend Deep Deterministic Uncertainty (DDU) (Mukhoti et al., 2021), a method for uncertainty estimation using feature space densities, to semantic segmentation. DDU enables quantifying and disentangling epistemic a... 详细信息
来源: 评论
B-cos Alignment for Inherently Interpretable CNNs and vision Transformers
arXiv
收藏 引用
arXiv 2023年
作者: Böhle, Moritz Singh, Navdeeppal Fritz, Mario Schiele, Bernt Department of Computer Vision and Machine Learning Max Planck Institute for Informatics Saarland Informatics Campus Saarbrucken66123 Germany CISPA Helmholtz Center for Information Security Saarbrucken66123 Germany
We present a new direction for increasing the interpretability of deep neural networks (DNNs) by promoting weight-input alignment during training. For this, we propose to replace the linear transformations in DNNs by ... 详细信息
来源: 评论
Underwater Object Detection Enhancement via Channel Stabilization
arXiv
收藏 引用
arXiv 2024年
作者: Ali, Muhammad Khan, Salman Department of Machine Learning Mohamed bin Zayed University of AI Abu Dhabi United Arab Emirates Department of Computer Vision Mohamed bin Zayed University of AI Abu Dhabi United Arab Emirates
The complex marine environment exacerbates the challenges of object detection manifold. With the advent of the modern era, marine trash presents a danger to the aquatic ecosystem, and it has always been challenging to... 详细信息
来源: 评论