The advent of autonomous vehicles has revolutionized the automotive industry, offering promising advancements in safety, efficiency, and mobility. To integrate these autonomous vehicles into our society seamlessly, it...
详细信息
Breast cancer poses a threat to women’s health and contributes to an increase in mortality rates. Mammography has proven to be an effective tool for the early detection of breast cancer. However, it faces many challe...
详细信息
Breast cancer poses a threat to women’s health and contributes to an increase in mortality rates. Mammography has proven to be an effective tool for the early detection of breast cancer. However, it faces many challenges in early breast cancer detection due to poor image quality, traditional segmentation, and feature extraction. Therefore, this work addresses these issues and proposes an attention-based backpropagation convolutional neural network (ABB-CNN) to detect breast cancer from mammogram images more accurately. The proposed work includes image enhancement, reinforcement learning-based semantic segmentation (RLSS), and multiview feature extraction and classification. The image enhancement is performed by removing noise and artefacts through a hybrid filter (HF), image scaling through a pixel-based bilinear interpolation (PBI), and contrast enhancement through an election-based optimization (EO) algorithm. In addition, the RLSS introduces intelligent segmentation by utilizing a deep Q network (DQN) to segment the region of interest (ROI) strategically. Moreover, the proposed ABB-CNN facilitates multiview feature extraction from the segmented region to classify the mammograms into normal, malignant, and benign classes. The proposed framework is evaluated on the collected and the digital database for screening mammography (DDSM) datasets. The proposed framework provides better outcomes in terms of accuracy, sensitivity, specificity, precision, f-measure, false-negative rate (FNR) and area under the curve (AUC). This work achieved (99.20%, 99.35%), (99.56%, 99.66%), (98.96%, 98.99%), (99.05%, 99.12%), (0.44%, 0.34%), (99.31%, 99.39%) and (99.27%, 99.32%) of accuracy, sensitivity, specificity, precision, FNR, f-measure and AUC on (collected, DDSM datasets), respectively. This research addresses the prevalent challenges in breast cancer identification and offers a robust and highly accurate solution by integrating advanced deep-learning techniques. The evaluated re
Efficient highway lighting is crucial for ensuring road safety and reducing energy consumption and costs. Traditional highway lighting systems rely on timers or simple photosensors, leading to inefficient operation by...
详细信息
Animation is a widespread artistic expression that holds a special place in people's hearts. Traditionally, animation creation has relied heavily on manual techniques, demanding skilled drawing abilities and a sig...
详细信息
Process monitoring plays a pivotal role in elucidating the intricate interplay among process, structure, and property in additive manufacturing production. The control of powder spreading affects not only particle adh...
详细信息
Plaintext-checkable encryption (PCE) can support searches over ciphertext by directly using plaintext. The functionality of a search is modeled by a specific check algorithm that takes a pair of target plaintext and c...
详细信息
Wireless Sensor Network(WSNs)consists of a group of nodes that analyze the information from surrounding *** sensor nodes are responsible for accumulating and exchanging ***,node local-ization is the process of identif...
详细信息
Wireless Sensor Network(WSNs)consists of a group of nodes that analyze the information from surrounding *** sensor nodes are responsible for accumulating and exchanging ***,node local-ization is the process of identifying the target node’s *** this research work,a Received Signal Strength Indicator(RSSI)-based optimal node localization approach is proposed to solve the complexities in the conventional node localization ***,the RSSI value is identified using the Deep Neural Network(DNN).The RSSI is conceded as the range-based method and it does not require special hardware for the node localization process,also it consumes a very minimal amount of cost for localizing the nodes in 3D *** position of the anchor nodes is fixed for detecting the location of the ***,the optimal position of the target node is identified using Hybrid T cell Immune with Lotus Effect Optimization algorithm(HTCI-LEO).During the node localization process,the average localization error is minimized,which is the objective of the optimal node *** the regular and irregular surfaces,this hybrid algorithm effectively performs the localization *** suggested hybrid algorithm converges very fast in the three-dimensional(3D)*** accuracy of the proposed node localization process is 94.25%.
Heart disease increases the strain on the heart by reducing its ability to pump blood throughout the body, which can lead to heart attacks and strokes. Heart disease is becoming a global threat to the world due to peo...
详细信息
Challenged networks (CNs) contain resource-constrained nodes deployed in regions where human intervention is difficult. Opportunistic networks (OppNets) are CNs with no predefined source-to-destination paths. Due to t...
详细信息
Multiple secondary users(SUs) perform collaborative spectrum sensing(CSS) in cognitive radio networks to improve the sensing performance. However,this system severely degrades with spectrum sensing data falsification(...
详细信息
Multiple secondary users(SUs) perform collaborative spectrum sensing(CSS) in cognitive radio networks to improve the sensing performance. However,this system severely degrades with spectrum sensing data falsification(SSDF) attacks from a large number of malicious secondary users, i.e., massive SSDF attacks. To mitigate such attacks, we propose a joint spectrum sensing and spectrum access framework. During spectrum sensing,each SU compares the decisions of CSS and independent spectrum sensing(IndSS), and then the reliable decisions are adopted as its final decisions. Since the transmission slot is divided into several tiny slots, at the stage of spectrum access, each SU is assigned with a specific tiny time slot. In accordance with its independent final spectrum decisions, each node separately accesses the tiny time *** results verify effectiveness of the proposed algorithm.
暂无评论