Bidirectional interlinking converter(BIC)is the core equipment in a hybrid AC/DC microgrid connected between AC and DC ***,the variety of control modes and flexible bidirectional power flow complicate the influence of...
详细信息
Bidirectional interlinking converter(BIC)is the core equipment in a hybrid AC/DC microgrid connected between AC and DC ***,the variety of control modes and flexible bidirectional power flow complicate the influence of AC faults on BIC itself and on DC sub-grid,which potentially threaten both converter safety and system *** study first investigates AC fault influence on the BIC and DC bus voltage under different BIC control modes and different pre-fault operation states,by developing a mathematical model and equivalent sequence ***,based on the analysis results,a general accommodative current limiting strategy is proposed for BIC without limitations to specific mode or operation *** amplitude is predicted and constrained according to the critical requirements to protect the BIC and relieving the AC fault influence on the DC bus *** with conventional methods,potential current limit failure and distortions under asymmetric faults can also be ***,experiments verify feasibility of the proposed method.
Robots are increasingly being deployed in densely populated environments, such as homes, hotels, and office buildings, where they rely on explicit instructions from humans to perform tasks. However, complex tasks ofte...
详细信息
Robots are increasingly being deployed in densely populated environments, such as homes, hotels, and office buildings, where they rely on explicit instructions from humans to perform tasks. However, complex tasks often require multiple instructions and prolonged monitoring, which can be time-consuming and demanding for users. Despite this, there is limited research on enabling robots to autonomously generate tasks based on real-life scenarios. Advanced intelligence necessitates robots to autonomously observe and analyze their environment and then generate tasks autonomously to fulfill human requirements without explicit commands. To address this gap, we propose the autonomous generation of navigation tasks using natural language dialogues. Specifically, a robot autonomously generates tasks by analyzing dialogues involving multiple persons in a real office environment to facilitate the completion of item transportation between various *** propose the leveraging of a large language model(LLM) through chain-of-thought prompting to generate a navigation sequence for a robot from dialogues. We also construct a benchmark dataset consisting of 625 multiperson dialogues using the generation capability of LLMs. Evaluation results and real-world experiments in an office building demonstrate the effectiveness of the proposed method.
Wireless Body Area Networks (WBANs) have risen as a promising innovation for checking human physiological parameters in real time. Be that as it may, the unwavering quality and precision of WBANs depend on the right w...
详细信息
As synthetic aperture radar (SAR) image change detection can continuously acquire target information under all weather conditions, it has been used in the past for various applications. However, it is very challenging...
详细信息
Airplanes play a critical role in global transportation, ensuring the efficient movement of people and goods. Although generally safe, aviation systems occasionally encounter incidents and accidents that underscore th...
详细信息
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research...
详细信息
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research is motivated by the pressing demand to enhance transportation mode classification, leveraging the potential of smartphone sensors, notably the accelerometer, magnetometer, and gyroscope. In response to this challenge, we present a novel automated classification model rooted in deep reinforcement learning. Our model stands out for its innovative approach of harnessing enhanced features through artificial neural networks (ANNs) and visualizing the classification task as a structured series of decision-making events. Our model adopts an improved differential evolution (DE) algorithm for initializing weights, coupled with a specialized agent-environment relationship. Every correct classification earns the agent a reward, with additional emphasis on the accurate categorization of less frequent modes through a distinct reward strategy. The Upper Confidence Bound (UCB) technique is used for action selection, promoting deep-seated knowledge, and minimizing reliance on chance. A notable innovation in our work is the introduction of a cluster-centric mutation operation within the DE algorithm. This operation strategically identifies optimal clusters in the current DE population and forges potential solutions using a pioneering update mechanism. When assessed on the extensive HTC dataset, which includes 8311 hours of data gathered from 224 participants over two years. Noteworthy results spotlight an accuracy of 0.88±0.03 and an F-measure of 0.87±0.02, underscoring the efficacy of our approach for large-scale transportation mode classification tasks. This work introduces an innovative strategy in the realm of transportation mode classification, emphasizing both precision and reliability, addressing the pressing need for enhanced classification mechanisms in an eve
Nowadays,review systems have been developed with social media Recommendation systems(RS).Although research on RS social media is increas-ing year by year,the comprehensive literature review and classification of this R...
详细信息
Nowadays,review systems have been developed with social media Recommendation systems(RS).Although research on RS social media is increas-ing year by year,the comprehensive literature review and classification of this RS research is limited and needs to be *** previous method did notfind any user reviews within a time,so it gets poor accuracy and doesn’tfilter the irre-levant comments effi*** Recursive Neural Network-based Trust Recom-mender System(RNN-TRS)is proposed to overcome this method’s *** it is efficient to analyse the trust comment and remove the irrelevant sentence ***first step is to collect the data based on the transactional reviews of social *** second step is pre-processing using Imbalanced Col-laborative Filtering(ICF)to remove the null values from the *** the features from the pre-processing step using the Maximum Support Grade Scale(MSGS)to extract the maximum number of scaling features in the dataset and grade the weights(length,count,etc.).In the Extracting features for Training and testing method before that in the feature weights evaluating the softmax acti-vation function for calculating the average weights of the ***,In the classification method,the Recursive Neural Network-based Trust Recommender System(RNN-TRS)for User reviews based on the Positive and negative scores is analysed by the *** simulation results improve the predicting accuracy and reduce time complexity better than previous methods.
Imagine numerous clients,each with personal data;individual inputs are severely corrupt,and a server only concerns the collective,statistically essential facets of this *** several data mining methods,privacy has beco...
详细信息
Imagine numerous clients,each with personal data;individual inputs are severely corrupt,and a server only concerns the collective,statistically essential facets of this *** several data mining methods,privacy has become highly *** a result,various privacy-preserving data analysis technologies have ***,we use the randomization process to reconstruct composite data attributes ***,we use privacy measures to estimate how much deception is required to guarantee *** are several viable privacy protections;however,determining which one is the best is still a work in *** paper discusses the difficulty of measuring privacy while also offering numerous random sampling procedures and statistical and categorized data ***-more,this paper investigates the use of arbitrary nature with perturbations in privacy *** to the research,arbitrary objects(most notably random matrices)have"predicted"frequency *** shows how to recover crucial information from a sample damaged by a random number using an arbi-trary lattice spectral selection *** system's conceptual frame-work posits,and extensive practicalfindings indicate that sparse data distortions preserve relatively modest privacy protection in various *** a result,the research framework is efficient and effective in maintaining data privacy and security.
Stock price accelerates interest and preference of the young generation to explore the stock market with elicit interest. An autopilot system is needed where users choose beneficial stocks of their choice without payi...
详细信息
Time series forecasting is an important field of research, especially when the series is completely random, known as a strictly non-stationary time series (NS-TS). To handle the randomness efficiently, the paper prese...
详细信息
暂无评论