In cloud data centers,the consolidation of workload is one of the phases during which the available hosts are allocated *** phenomenon ensures that the least possible number of hosts is used without compromise in meet...
详细信息
In cloud data centers,the consolidation of workload is one of the phases during which the available hosts are allocated *** phenomenon ensures that the least possible number of hosts is used without compromise in meeting the Service Level Agreement(SLA).To consolidate the workloads,the hosts are segregated into three categories:normal hosts,under-loaded hosts,and over-loaded hosts based on their *** is to be noted that the identification of an extensively used host or underloaded host is challenging to ***-old values were proposed in the literature to detect this *** current study aims to improve the existing methods that choose the underloaded hosts,get rid of Virtual Machines(VMs)from them,andfinally place them in some other *** researcher proposes a Host Resource Utilization Aware(HRUAA)Algorithm to detect those underloaded and place its virtual machines on different hosts in a vibrant Cloud *** mechanism presented in this study is contrasted with existing mechanisms *** results attained from the study estab-lish that numerous hosts can be shut down,while at the same time,the user's workload requirement can also be *** proposed method is energy-efficient in workload consolidation,saves cost and time,and leverages active hosts.
Emotion Recognition in Conversations(ERC)is fundamental in creating emotionally ***-BasedNetwork(GBN)models have gained popularity in detecting conversational contexts for ERC ***,their limited ability to collect and ...
详细信息
Emotion Recognition in Conversations(ERC)is fundamental in creating emotionally ***-BasedNetwork(GBN)models have gained popularity in detecting conversational contexts for ERC ***,their limited ability to collect and acquire contextual information hinders their *** propose a Text Augmentation-based computational model for recognizing emotions using transformers(TA-MERT)to address *** proposed model uses the Multimodal Emotion Lines Dataset(MELD),which ensures a balanced representation for recognizing human *** used text augmentation techniques to producemore training data,improving the proposed model’s *** encoders train the deep neural network(DNN)model,especially Bidirectional Encoder(BE)representations that capture both forward and backward contextual *** integration improves the accuracy and robustness of the proposed ***,we present a method for balancing the training dataset by creating enhanced samples from the original *** balancing the dataset across all emotion categories,we can lessen the adverse effects of data imbalance on the accuracy of the proposed *** results on the MELD dataset show that TA-MERT outperforms earlier methods,achieving a weighted F1 score of 62.60%and an accuracy of 64.36%.Overall,the proposed TA-MERT model solves the GBN models’weaknesses in obtaining contextual data for ***-MERT model recognizes human emotions more accurately by employing text augmentation and transformer-based *** balanced dataset and the additional training samples also enhance its *** findings highlight the significance of transformer-based approaches for special emotion recognition in conversations.
Particles in the atmosphere, such as dust and smoke, can cause visual clarity problems in both images and videos. Haze is the result of the interaction between airborne particles and light, which is scattered and atte...
详细信息
Particles in the atmosphere, such as dust and smoke, can cause visual clarity problems in both images and videos. Haze is the result of the interaction between airborne particles and light, which is scattered and attenuated. Hazy media present difficulties in a variety of applications due to the reduced contrast and loss of essential information. In response, dehazing techniques have been introduced to bring hazy videos and images back to clarity. Here, we provide a novel technique for eliminating haze. It comprises preprocessing steps before dehazing. Preprocessing is applied to hazy images through homomorphic processing and Contrast Limited Adaptive Histogram Equalization (CLAHE). We present a dehazing technique referred to as the pre-trained Feature Fusion Attention Network (FFA-Net) that directly lets dehazed images be restored from hazy or preprocessed hazy inputs without requiring the determination of atmospheric factors, such as air light and transmission maps. The FFA-Net architecture incorporates a Feature Attention (FA) method to do this task. We assess the proposed technique in a variety of circumstances, including visible frames, Near-Infrared (NIR) frames, and real-world hazy images. Evaluation criteria like entropy, correlation, and Peak Signal-to-Noise Ratio (PSNR) are used to compare the quality of dehazed frames or images to their hazy counterparts. Furthermore, histogram analysis and spectral entropy are adopted to determine the effectiveness of the proposed technique in comparison to existing dehazing techniques. Comparative results are presented for both real-world and simulated environments. The benefits of the proposed technique are demonstrated by a comparison of the results obtained from the standalone pre-trained FFA-Net and the proposed comprehensive methodology. Moreover, a thorough assessment is carried out for comparing the effectiveness of the proposed FFA-Net technique to those of some current dehazing techniques on real hazy images. T
The present study investigates the synthesis of vertically aligned MnO2 nanowires (NW) decorated with gold (Au) and silver (Ag) nanoparticles (NP) via the glancing angle deposition (GLAD) technique without a need for ...
详细信息
Micro-expressions (MEs) are fleeting involuntary facial movements, which occur frequently when people attempt to conceal their emotions. Since human eyesight cannot detect fleeting and slight changes in facial express...
详细信息
In a non-static information exchange network,routing is an overly com-plex task to perform,which has to satisfy all the needs of the *** Defined Network(SDN)is the latest and widely used technology in the future commun...
详细信息
In a non-static information exchange network,routing is an overly com-plex task to perform,which has to satisfy all the needs of the *** Defined Network(SDN)is the latest and widely used technology in the future communication networks,which would provide smart routing that is visible *** various features of routing are supported by the information centric network,which minimizes the congestion in the dataflow in a network and pro-vides the content awareness through its mined *** to the advantages of the information centric network,the concepts of the information-centric net-work has been used in the paper to enable an optimal routing in the software-defined *** there are many advantages in the information-centric network,there are some disadvantages due to the non-static communication prop-erties,which affects the routing in *** this regard,artificial intelligence meth-odology has been used in the proposed approach to solve these difficulties.A detailed analysis has been conducted to map the content awareness with deep learning and deep reinforcement learning with *** novel aligned internet investigation technique has been proposed to process the deep reinforcement *** performance evaluation of the proposed systems has been con-ducted among various existing approaches and results in optimal load balancing,usage of the bandwidth,and maximization in the throughput of the network.
Aim: Recent advances in Artificial Intelligence (AI) and the addition of Deep Learning (DL) have made it possible to analyse both real-time and historical data from the Internet of Things (IoT). Recently, IoT technolo...
详细信息
In the wake of rapid advancements in artificial intelligence(AI), we stand on the brink of a transformative leap in data systems. The imminent fusion of AI and DB(AI×DB) promises a new generation of data systems,...
详细信息
In the wake of rapid advancements in artificial intelligence(AI), we stand on the brink of a transformative leap in data systems. The imminent fusion of AI and DB(AI×DB) promises a new generation of data systems, which will relieve the burden on end-users across all industry sectors by featuring AI-enhanced functionalities, such as personalized and automated in-database AI-powered analytics, and selfdriving capabilities for improved system performance. In this paper, we explore the evolution of data systems with a focus on deepening the fusion of AI and DB. We present NeurDB, an AI-powered autonomous data system designed to fully embrace AI design in each major system component and provide in-database AI-powered analytics. We outline the conceptual and architectural overview of NeurDB, discuss its design choices and key components, and report its current development and future plan.
The application of noninvasive methods to enhance healthcare systems has been facilitated by the development of new technology. Among the four major cardiovascular diseases, stroke is one of the deadliest and potentia...
详细信息
Weed is a plant that grows along with nearly allfield crops,including rice,wheat,cotton,millets and sugar cane,affecting crop yield and *** and accurate identification of all types of weeds is a challenging task for f...
详细信息
Weed is a plant that grows along with nearly allfield crops,including rice,wheat,cotton,millets and sugar cane,affecting crop yield and *** and accurate identification of all types of weeds is a challenging task for farmers in earlier stage of crop growth because of *** address this issue,an efficient weed classification model is proposed with the Deep Convolutional Neural Network(CNN)that implements automatic feature extraction and performs complex feature learning for image *** this work,weed images were trained using the proposed CNN model with evolutionary computing approach to classify the weeds based on the two publicly available weed *** Tamil Nadu Agricultural University(TNAU)dataset used as afirst dataset that consists of 40 classes of weed images and the other dataset is from Indian Council of Agriculture Research–Directorate of Weed Research(ICAR-DWR)which contains 50 classes of weed *** effective Particle Swarm Optimization(PSO)technique is applied in the proposed CNN to automa-tically evolve and improve its classification *** proposed model was evaluated and compared with pre-trained transfer learning models such as GoogLeNet,AlexNet,Residual neural Network(ResNet)and Visual Geometry Group Network(VGGNet)for weed *** work shows that the performance of the PSO assisted proposed CNN model is significantly improved the success rate by 98.58%for TNAU and 97.79%for ICAR-DWR weed datasets.
暂无评论