Autism Spectrum Disorder(ASD)requires a precise diagnosis in order to be managed and ***-invasive neuroimaging methods are disease markers that can be used to help diagnose *** majority of available techniques in the ...
详细信息
Autism Spectrum Disorder(ASD)requires a precise diagnosis in order to be managed and ***-invasive neuroimaging methods are disease markers that can be used to help diagnose *** majority of available techniques in the literature use functional magnetic resonance imaging(fMRI)to detect ASD with a small dataset,resulting in high accuracy but low *** supervised machine learning classification algorithms such as support vector machines function well with unstructured and semi structured data such as text,images,and videos,but their performance and robustness are restricted by the size of the accompanying training *** learning on the other hand creates an artificial neural network that can learn and make intelligent judgments on its own by layering *** takes use of plentiful low-cost computing and many approaches are focused with very big datasets that are concerned with creating far larger and more sophisticated neural *** modelling,also known as Generative Adversarial Networks(GANs),is an unsupervised deep learning task that entails automatically discovering and learning regularities or patterns in input data in order for the model to generate or output new examples that could have been drawn from the original *** are an exciting and rapidly changingfield that delivers on the promise of generative models in terms of their ability to generate realistic examples across a range of problem domains,most notably in image-to-image translation tasks and hasn't been explored much for Autism spectrum disorder prediction in the *** this paper,we present a novel conditional generative adversarial network,or cGAN for short,which is a form of GAN that uses a generator model to conditionally generate *** terms of prediction and accuracy,they outperform the standard *** pro-posed model is 74%more accurate than the traditional methods and takes only around 10 min for training even with a huge dat
Managing physical objects in the network’s periphery is made possible by the Internet of Things(IoT),revolutionizing human *** attacks and unauthorized access are possible with these IoT devices,which exchange data t...
详细信息
Managing physical objects in the network’s periphery is made possible by the Internet of Things(IoT),revolutionizing human *** attacks and unauthorized access are possible with these IoT devices,which exchange data to enable remote *** attacks are often detected using intrusion detection methodologies,although these systems’effectiveness and accuracy are *** paper proposes a new voting classifier composed of an ensemble of machine learning models trained and optimized using metaheuristic *** employed metaheuristic optimizer is a new version of the whale optimization algorithm(WOA),which is guided by the dipper throated optimizer(DTO)to improve the exploration process of the traditionalWOA *** proposed voting classifier categorizes the network intrusions robustly and *** assess the proposed approach,a dataset created from IoT devices is employed to record the efficiency of the proposed algorithm for binary attack *** dataset records are balanced using the locality-sensitive hashing(LSH)and Synthetic Minority Oversampling Technique(SMOTE).The evaluation of the achieved results is performed in terms of statistical analysis and visual plots to prove the proposed approach’s effectiveness,stability,and *** achieved results confirmed the superiority of the proposed algorithm for the task of network intrusion detection.
With the growing awareness of secure computation, more and more users want to make their digital footprints securely deleted and irrecoverable after updating or removing files on storage devices. To achieve the effect...
详细信息
Heart disease remains a leading global cause of mortality, emphasizing the need for innovative diagnostic solutions. Traditional Clinical Decision Support Systems (CDSS) often struggle with limited datasets and imbala...
详细信息
Facial expression recognition is a challenging task when neural network is applied to pattern recognition. Most of the current recognition research is based on single source facial data, which generally has the disadv...
详细信息
In the machine learning(ML)paradigm,data augmentation serves as a regularization approach for creating ML *** increase in the diversification of training samples increases the generalization capabilities,which enhance...
详细信息
In the machine learning(ML)paradigm,data augmentation serves as a regularization approach for creating ML *** increase in the diversification of training samples increases the generalization capabilities,which enhances the prediction performance of classifiers when tested on unseen *** learning(DL)models have a lot of parameters,and they frequently ***,to avoid overfitting,data plays a major role to augment the latest improvements in ***,reliable data collection is a major limiting ***,this problem is undertaken by combining augmentation of data,transfer learning,dropout,and methods of normalization in *** this paper,we introduce the application of data augmentation in the field of image classification using Random Multi-model Deep Learning(RMDL)which uses the association approaches of multi-DL to yield random models for *** present a methodology for using Generative Adversarial Networks(GANs)to generate images for data *** experiments,we discover that samples generated by GANs when fed into RMDL improve both accuracy and model *** across both MNIST and CIAFAR-10 datasets show that,error rate with proposed approach has been decreased with different random models.
In the field of machining, product quality must meet customer specifications. In general, surface roughness is an essential indicator of machining quality. Low surface roughness correlates with increased fatigue stren...
详细信息
In the field of machining, product quality must meet customer specifications. In general, surface roughness is an essential indicator of machining quality. Low surface roughness correlates with increased fatigue strength and corrosion resistance. However, the main factor that affects surface roughness is the selection of the machining parameters. When different parameters are combined, the resulting machining quality varies. Therefore, to achieve the desired machining quality, appropriate machining parameters must be selected. In this study, an ultrasonic-assisted machining system (UAMS) was designed to help users determine the machining parameters and machine SiC materials. To establish a prediction model for surface roughness, a novel network mapping fusion (NMF) convolutional neuro-fuzzy network (CNFN) model was used in the designed UAMS. The differential evolution algorithm was then used to search for optimized machining parameters. To explain the prediction model, which can help analyze the factors that have the greatest influence on surface roughness, a Shapley additive explanations method is proposed. The proposed NMF–CNFN model was more accurate than were the other deep learning models and exhibited a MAPE of 1.98%. When optimized machining parameters were selected, the desired surface roughness was obtained, thereby confirming the effectiveness and accuracy of the proposed UAMS. Moreover, the proposed model was implemented in a field-programmable gate array (FPGA) to reduce its power consumption and increase its computational performance. Experimental results indicated that the computational speed of the FPGA was 99.64%and 99.16%higher than those of the CPU and GPU, respectively. IEEE
This paper proposes a containment control law for a heterogeneous multi-agent system (MAS) by using the binary relative position measurements of the agents and the targets. Unlike the existing methods, this approach r...
详细信息
As a pivotal enabler of intelligent transportation system(ITS), Internet of vehicles(Io V) has aroused extensive attention from academia and industry. The exponential growth of computation-intensive, latency-sensitive...
详细信息
As a pivotal enabler of intelligent transportation system(ITS), Internet of vehicles(Io V) has aroused extensive attention from academia and industry. The exponential growth of computation-intensive, latency-sensitive,and privacy-aware vehicular applications in Io V result in the transformation from cloud computing to edge computing,which enables tasks to be offloaded to edge nodes(ENs) closer to vehicles for efficient execution. In ITS environment,however, due to dynamic and stochastic computation offloading requests, it is challenging to efficiently orchestrate offloading decisions for application requirements. How to accomplish complex computation offloading of vehicles while ensuring data privacy remains challenging. In this paper, we propose an intelligent computation offloading with privacy protection scheme, named COPP. In particular, an Advanced Encryption Standard-based encryption method is utilized to implement privacy protection. Furthermore, an online offloading scheme is proposed to find optimal offloading policies. Finally, experimental results demonstrate that COPP significantly outperforms benchmark schemes in the performance of both delay and energy consumption.
The safety and reliability of connected autonomous vehicles (CAVs) hinge on their ability to navigate complex and unpredictable driving environments. Traditional testing methods, relying on real-world data and simulat...
详细信息
暂无评论