This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as o...
详细信息
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel *** awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and *** techniques mitigated overfitting,stabilized training,and improved generalization *** LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,*** findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature *** additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial *** instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often *** study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are *** research m
Botnets have become a severe security threat not only to the Internet but also to the devices connected to it. Factors like the exponential growth of IoT, the COVID-19 pandemic, and the ever-larger number of cybercrim...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
This paper investigates the 3D domain generalization (3DDG) ability of large 3D models based on prevalent prompt learning. Recent works demonstrate the performances of 3D point cloud recognition can be boosted remarka...
Knee Osteoarthritis (KOA), the most prevalent joint disease, significantly impacts elderly mobility due to progressive cartilage degeneration. Early prediction is crucial for preventing disease progression and guiding...
详细信息
In order to maintain sustainable agriculture, it is vital to monitor plant health. Since all species of plants are prone to characteristic diseases, it necessitates regular surveillance to search for any symptoms, whi...
详细信息
Drones are flying objects that may be controlled remotely or programmed to do a wide range of tasks, including aerial photography, videography, surveys, crop and animal monitoring, search and rescue missions, package ...
详细信息
Parameter control involves dynamically adjusting the parameter values of the evolutionary algorithm throughout the optimization process, including parameters like mutation rate and operator selection. Self-adaptation ...
详细信息
The introduction of the Internet of Medical Things (IoMT), has drastically transformed the worldwide landscape of healthcare delivery. The proliferation of IoMT devices in healthcare systems brings new issues in guara...
详细信息
Parameter control refers to the techniques that dynamically adapt the parameter values of the evolutionary algorithm during the optimization process, such as population size, crossover rate, or operator selection. Ada...
详细信息
暂无评论