In this poster session we are reporting on the results of two, three-week summer graduate teaching experiences that took place in Nanjing, China over a two-year period. A faculty exchange program was entered into betw...
详细信息
ISBN:
(纸本)9781605587653
In this poster session we are reporting on the results of two, three-week summer graduate teaching experiences that took place in Nanjing, China over a two-year period. A faculty exchange program was entered into between Southeast University of Nanjing China and Purdue University Calumet of Hammond, Indiana, USA. One of the goals of the exchange program was to expose Chinese students to the instructional methods employed by United States Universities. By understanding the cultural differences and utilizing various teaching methodologies employed by American teachers, the faculty and students involved in these three-week classroom intensive training courses were able to adapt and successfully complete the graduate level material that was presented.
Integrated sensing and communication (ISAC) is a promising technique to increase spectral efficiency and support various emerging applications by sharing the spectrum and hardware between these functionalities. Howeve...
详细信息
Integrated sensing and communication (ISAC) is a promising technique to increase spectral efficiency and support various emerging applications by sharing the spectrum and hardware between these functionalities. However, the traditional ISAC schemes are highly dependent on the accurate mathematical model and suffer from the challenges of high complexity and poor performance in practical scenarios. Recently, artificial intelligence (AI) has emerged as a viable technique to address these issues due to its powerful learning capabilities, satisfactory generalization capability, fast inference speed, and high adaptability for dynamic environments, facilitating a system design shift from model-driven to data-driven. Intelligent ISAC, which integrates AI into ISAC, has been a hot topic that has attracted many researchers to investigate. In this paper, we provide a comprehensive overview of intelligent ISAC, including its motivation, typical applications, recent trends, and challenges. In particular, we first introduce the basic principle of ISAC, followed by its key techniques. Then, an overview of AI and a comparison between model-based and AI-based methods for ISAC are provided. Furthermore, the typical applications of AI in ISAC and the recent trends for AI-enabled ISAC are reviewed. Finally, the future research issues and challenges of intelligent ISAC are discussed.
In today’s era, smartphones are used in daily lives because they are ubiquitous and can be customized by installing third-party apps. As a result, the menaces because of these apps, which are potentially risky for u...
详细信息
This study examines the use of experimental designs, specifically full and fractional factorial designs, for predicting Alzheimer’s disease with fewer variables. The full factorial design systematically investigates ...
详细信息
Efficient botnet detection is of great security importance and has been the focus of researchers in recent years. Botnet detection is also a difficult task due to the difficulty in distinguishing it from normal traffi...
详细信息
Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing de...
详细信息
Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing details about the speaker’s goals and desires, as well as their internal condition. Certain vocal characteristics reveal the speaker’s mood, intention, and motivation, while word study assists the speaker’s demand to be understood. Voice emotion recognition has become an essential component of modern HCC networks. Integrating findings from the various disciplines involved in identifying vocal emotions is also challenging. Many sound analysis techniques were developed in the past. Learning about the development of artificial intelligence (AI), and especially Deep Learning (DL) technology, research incorporating real data is becoming increasingly common these days. Thus, this research presents a novel selfish herd optimization-tuned long/short-term memory (SHO-LSTM) strategy to identify vocal emotions in human communication. The RAVDESS public dataset is used to train the suggested SHO-LSTM technique. Mel-frequency cepstral coefficient (MFCC) and wiener filter (WF) techniques are used, respectively, to remove noise and extract features from the data. LSTM and SHO are applied to the extracted data to optimize the LSTM network’s parameters for effective emotion recognition. Python Software was used to execute our proposed framework. In the finding assessment phase, Numerous metrics are used to evaluate the proposed model’s detection capability, Such as F1-score (95%), precision (95%), recall (96%), and accuracy (97%). The suggested approach is tested on a Python platform, and the SHO-LSTM’s outcomes are contrasted with those of other previously conducted research. Based on comparative assessments, our suggested approach outperforms the current approaches in vocal emotion recognition.
With the continuous growth of cloud computing and virtualization technology, network function virtualization (NFV) techniques have been significantly enhanced. NFV has many advantages such as simplified services, prov...
详细信息
With the continuous growth of cloud computing and virtualization technology, network function virtualization (NFV) techniques have been significantly enhanced. NFV has many advantages such as simplified services, providing more flexible services, and reducing network capital and operational costs. However, it also poses new challenges that need to be addressed. A challenging problem with NFV is resource management, since the resources required by each virtualized network function (VNF) change with dynamic traffic variations, requiring automatic scaling of VNF resources. Due to the resource consumption importance, it is essential to propose an efficient resource auto-scaling method in the NFV networks. Inadequate or excessive utilization of VNF resources can result in diminished performance of the entire service chain, thereby affecting network performance. Therefore, predicting VNF resource requirements is crucial for meeting traffic demands. VNF behavior in networks is complex and nonlinear, making it challenging to model. By incorporating machine learning methods into resource prediction models, network service performance can be improved by addressing this complexity. As a result, this paper introduces a new auto-scaling architecture and algorithm to tackle the predictive VNF problem. Within the proposed architecture, there is a predictive VNF auto-scaling engine that comprises two modules: a predictive task scheduler and a predictive VNF auto-scaler. Furthermore, a prediction engine with a VNF resource predictor module has been designed. In addition, the proposed algorithm called GPAS is presented in three phases, VNF resource prediction using genetic programming (GP) technique, task scheduling and decision-making, and auto-scaling execution. The GPAS method is simulated in the KSN framework, a network environment based on NFV/SDN. In the evaluation results, the GPAS method shows better performance in SLA violation rate, resource usage, and response time when co
The effects of changing learning rates, data augmentation percentage and numbers of epochs on the performance of Wasserstein Generative Adversarial Networks with Gradient Penalties (WGAN-GP) are evaluated in this stud...
详细信息
Effective management of electricity consumption (EC) in smart buildings (SBs) is crucial for optimizing operational efficiency, cost savings, and ensuring sustainable resource utilization. Accurate EC prediction enabl...
详细信息
The paper addresses the critical problem of application workflow offloading in a fog environment. Resource constrained mobile and Internet of Things devices may not possess specialized hardware to run complex workflow...
详细信息
暂无评论