The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received c...
详细信息
The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received considerable attention in transmitting data and ensuring data confidentiality among cloud servers and users. Various traditional image retrieval techniques regarding security have developed in recent years but they do not apply to large-scale environments. This paper introduces a new approach called Triple network-based adaptive grey wolf (TN-AGW) to address these challenges. The TN-AGW framework combines the adaptability of the Grey Wolf Optimization (GWO) algorithm with the resilience of Triple Network (TN) to enhance image retrieval in cloud servers while maintaining robust security measures. By using adaptive mechanisms, TN-AGW dynamically adjusts its parameters to improve the efficiency of image retrieval processes, reducing latency and utilization of resources. However, the image retrieval process is efficiently performed by a triple network and the parameters employed in the network are optimized by Adaptive Grey Wolf (AGW) optimization. Imputation of missing values, Min–Max normalization, and Z-score standardization processes are used to preprocess the images. The image extraction process is undertaken by a modified convolutional neural network (MCNN) approach. Moreover, input images are taken from datasets such as the Landsat 8 dataset and the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset is employed for image retrieval. Further, the performance such as accuracy, precision, recall, specificity, F1-score, and false alarm rate (FAR) is evaluated, the value of accuracy reaches 98.1%, the precision of 97.2%, recall of 96.1%, and specificity of 917.2% respectively. Also, the convergence speed is enhanced in this TN-AGW approach. Therefore, the proposed TN-AGW approach achieves greater efficiency in image retrieving than other existing
In this paper, we have proposed a multi-task learning model for multi-lingual Optical Character Recognition. Our model does the script identification and text recognition simultaneously of offline machine printed docu...
详细信息
Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless *** this paper,a robust transmission scheme for ...
详细信息
Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless *** this paper,a robust transmission scheme for an AirCompbased FL system with imperfect channel state information(CSI)is *** model CSI uncertainty,an expectation-based error model is *** main objective is to maximize the number of selected devices that meet mean-squared error(MSE)requirements for model broadcast and model *** problem is formulated as a combinatorial optimization problem and is solved in two ***,the priority order of devices is determined by a sparsity-inducing ***,a feasibility detection scheme is used to select the maximum number of devices to guarantee that the MSE requirements are *** alternating optimization(AO)scheme is used to transform the resulting nonconvex problem into two convex *** results illustrate the effectiveness and robustness of the proposed scheme.
Effective task scheduling and resource allocation have become major problems as a result of the fast development of cloud computing as well as the rise of multi-cloud systems. To successfully handle these issues, we p...
详细信息
Image caption-generating systems aim to deliver accurate, coherent, and useful captions. This includes identifying the scene, items, relationships, and attributes of the image's objects. Due to constraints in usin...
详细信息
In the data retrieval process of the Data recommendation system,the matching prediction and similarity identification take place a major role in the *** that,there are several methods to improve the retrieving process...
详细信息
In the data retrieval process of the Data recommendation system,the matching prediction and similarity identification take place a major role in the *** that,there are several methods to improve the retrieving process with improved accuracy and to reduce the searching ***,in the data recommendation system,this type of data searching becomes complex to search for the best matching for given query data and fails in the accuracy of the query recommendation *** improve the performance of data validation,this paper proposed a novel model of data similarity estimation and clustering method to retrieve the relevant data with the best matching in the big data *** this paper advanced model of the Logarithmic Directionality Texture Pattern(LDTP)method with a Metaheuristic Pattern Searching(MPS)system was used to estimate the similarity between the query data in the entire *** overall work was implemented for the application of the data recommendation *** are all indexed and grouped as a cluster to form a paged format of database structure which can reduce the computation time while at the searching ***,with the help of a neural network,the relevancies of feature attributes in the database are predicted,and the matching index was sorted to provide the recommended data for given query *** was achieved by using the Distributional Recurrent Neural Network(DRNN).This is an enhanced model of Neural Network technology to find the relevancy based on the correlation factor of the feature *** training process of the DRNN classifier was carried out by estimating the correlation factor of the attributes of the *** are formed as clusters and paged with proper indexing based on the MPS parameter of similarity *** overall performance of the proposed work can be evaluated by varying the size of the training database by 60%,70%,and 80%.The parameters that are considered for performance analysis are Precision
Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee *** deadly disease is har...
详细信息
Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee *** deadly disease is hard to control because wind,rain,and insects carry *** researchers utilized a deep learning system to identify CBD in coffee cherries at three growth stages and classify photographs of infected and uninfected cherries with 93%accuracy using a random forest *** the dataset is too small and noisy,the algorithm may not learn data patterns and generate accurate *** overcome the existing challenge,early detection of Colletotrichum Kahawae disease in coffee cherries requires automated processes,prompt recognition,and accurate *** proposed methodology selects CBD image datasets through four different stages for training and *** to train a model on datasets of coffee berries,with each image labeled as healthy or *** themodel is trained,SHAP algorithmto figure out which features were essential formaking predictions with the proposed *** of these characteristics were the cherry’s colour,whether it had spots or other damage,and how big the Lesions *** inception is important for classification to virtualize the relationship between the colour of the berry is correlated with the presence of *** evaluate themodel’s performance andmitigate excess fitting,a 10-fold cross-validation approach is *** involves partitioning the dataset into ten subsets,training the model on each subset,and evaluating its *** comparison to other contemporary methodologies,the model put forth achieved an accuracy of 98.56%.
Robust fake speech detection systems are crucial in an era where audio recordings can be easily altered or developed due to advancements in technology. The potential impact of this technology could be devastating due ...
详细信息
Cloud computing has emerged as a viable alternative to traditional computing infrastructures,offering various ***,the adoption of cloud storage poses significant risks to data secrecy and *** article presents an effec...
详细信息
Cloud computing has emerged as a viable alternative to traditional computing infrastructures,offering various ***,the adoption of cloud storage poses significant risks to data secrecy and *** article presents an effective mechanism to preserve the secrecy and integrity of data stored on the public cloud by leveraging blockchain technology,smart contracts,and cryptographic *** proposed approach utilizes a Solidity-based smart contract as an auditor for maintaining and verifying the integrity of outsourced *** preserve data secrecy,symmetric encryption systems are employed to encrypt user data before outsourcing *** extensive performance analysis is conducted to illustrate the efficiency of the proposed ***,a rigorous assessment is conducted to ensure that the developed smart contract is free from vulnerabilities and to measure its associated running *** security analysis of the proposed system confirms that our approach can securely maintain the confidentiality and integrity of cloud storage,even in the presence of malicious *** proposed mechanism contributes to enhancing data security in cloud computing environments and can be used as a foundation for developing more secure cloud storage systems.
Aflood is a significant damaging natural calamity that causes loss of life and *** work on the construction offlood prediction models intended to reduce risks,suggest policies,reduce mortality,and limit property damage c...
详细信息
Aflood is a significant damaging natural calamity that causes loss of life and *** work on the construction offlood prediction models intended to reduce risks,suggest policies,reduce mortality,and limit property damage caused byfl*** massive amount of data generated by social media platforms such as Twitter opens the door toflood *** of the real-time nature of Twitter data,some government agencies and authorities have used it to track natural catastrophe events in order to build a more rapid rescue ***,due to the shorter duration of Tweets,it is difficult to construct a perfect prediction model for determiningfl*** learning(ML)and deep learning(DL)approaches can be used to statistically developflood prediction *** the same time,the vast amount of Tweets necessitates the use of a big data analytics(BDA)tool forflood *** this regard,this work provides an optimal deep learning-basedflood forecasting model with big data analytics(ODLFF-BDA)based on Twitter *** suggested ODLFF-BDA technique intends to anticipate the existence offloods using tweets in a big data *** ODLFF-BDA technique comprises data pre-processing to convert the input tweets into a usable *** addition,a Bidirectional Encoder Representations from Transformers(BERT)model is used to generate emotive contextual embed-ding from ***,a gated recurrent unit(GRU)with a Multilayer Convolutional Neural Network(MLCNN)is used to extract local data and predict thefl***,an Equilibrium Optimizer(EO)is used tofine-tune the hyper-parameters of the GRU and MLCNN models in order to increase prediction *** memory usage is pull down lesser than 3.5 MB,if its compared with the other algorithm *** ODLFF-BDA technique’s performance was validated using a benchmark Kaggle dataset,and thefindings showed that it outperformed other recent approaches significantly.
暂无评论