A complicated neuro-developmental disorder called Autism Spectrum Disorder (ASD) is abnormal activities related to brain development. ASD generally affects the physical impression of the face as well as the growth of ...
详细信息
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions i...
详细信息
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd datas
In Intelligent Transportation Systems (ITS) and smart cities, Vehicular Ad hoc Networks (VANETs) are vital but face challenges due to their dynamic topology, making traditional IP-based content retrieval impractical. ...
详细信息
Clinical decision support systems (CDSSs) can effectively detect illnesses such as breast cancer (BC) using a variety of medical imaging techniques. BC is a key factor contributing to the rise in the death rate among ...
详细信息
Tomatoes are essential fruits in numerous nations for their vast demand. It is very important to maintain the freshness of tomatoes. One of the primary challenges in the recent culinary landscape is accurately identif...
详细信息
Underwater wireless sensor networks(UWSNs)rely on data aggregation to streamline routing operations by merging information at intermediate nodes before transmitting it to the ***,many existing data aggregation techniq...
详细信息
Underwater wireless sensor networks(UWSNs)rely on data aggregation to streamline routing operations by merging information at intermediate nodes before transmitting it to the ***,many existing data aggregation techniques are designed exclusively for static networks and fail to reflect the dynamic nature of underwater ***,conventional multi-hop data gathering techniques often lead to energy depletion problems near the sink,commonly known as the energy hole ***,cluster-based aggregation methods face significant challenges such as cluster head(CH)failures and collisions within clusters that degrade overall network *** address these limitations,this paper introduces an innovative framework,the Cluster-based Data Aggregation using Fuzzy Decision Model(CDAFDM),tailored for mobile *** proposed method has four main phases:clustering,CH selection,data aggregation,and *** CH selection,a fuzzy decision model is utilized to ensure efficient cluster head selection based on parameters such as residual energy,distance to the sink,and data delivery likelihood,enhancing network stability and energy *** the aggregation phase,CHs transmit a single,consolidated set of non-redundant data to the base station(BS),thereby reducing data duplication and saving *** adapt to the changing network topology,the re-clustering phase periodically updates cluster formations and reselects *** results show that CDAFDM outperforms current protocols such as CAPTAIN(Collection Algorithm for underwater oPTical-AcoustIc sensor Networks),EDDG(Event-Driven Data Gathering),and DCBMEC(Data Collection Based on Mobile Edge Computing)with a packet delivery ratio increase of up to 4%,an energy consumption reduction of 18%,and a data collection latency reduction of 52%.These findings highlight the framework’s potential for reliable and energy-efficient data aggregation mobile UWSNs.
Text-based hate speech has been prevalent and is usually used to incite hostility and violence. Detecting this content becomes imperative, yet the task is challenging, particularly for low-resource languages in the De...
详细信息
Agriculture, the backbone of many economies, faces challenges like lack of information, outdated practices, and limited access to technology, hindering farmer productivity. This work proposes a user-friendly, multilin...
详细信息
Agriculture, the backbone of many economies, faces challenges like lack of information, outdated practices, and limited access to technology, hindering farmer productivity. This work proposes a user-friendly, multilingual platform leveraging Generative AI to address farmers' diverse needs. The platform encompasses various features to enhance agricultural practices. An LLM-powered Government Scheme Advisor functions as a multilingual chatbot offering intelligent guidance on government agricultural schemes and subsidies. The Disease Detection module utilizes AI technology for real-time identification and treatment recommendations, minimizing crop diseases and yield losses. The Soil Testing Centre feature locates nearby soil testing centers, providing essential information based on geographical data to assist farmers in optimizing soil quality. A Crop Recommendation feature employs Machine Learning algorithms to offer personalized crop recommendations, considering various factors and aiding informed decision-making. The Crop Planning Tool, with its intuitive user interface, simplifies planning planting schedules and managing resources. Additionally, the platform includes an MSP Center Locator to find nearby Minimum Support Price (MSP) centers based on location. By integrating these innovative solutions, this platform bridges the gap between conventional agricultural techniques and contemporary technology, equipping farmers with the resources and expertise essential for advancing productivity and sustainability. Multilingual support ensures accessibility for a wider audience, breaking down language barriers and promoting inclusivity in the agricultural sector. This work proposes an innovative, multilingual platform powered by Generative AI to address these issues. Key features include an LLM-driven chatbot for government scheme guidance, AI-based real-time disease detection, and location-based tools for soil testing and MSP center identification. Additionally, the platf
Accurate significant wave height(SWH)prediction is essential for the development and utilization of wave *** learning methods such as recurrent and convolutional neural networks have achieved good results in SWH ***,t...
详细信息
Accurate significant wave height(SWH)prediction is essential for the development and utilization of wave *** learning methods such as recurrent and convolutional neural networks have achieved good results in SWH ***,these methods do not adapt well to dynamic seasonal variations in wave *** this study,we propose a novel method—the spatiotemporal dynamic graph(STDG)neural *** method predicts the SWH of multiple nodes based on dynamic graph modeling and multi-characteristic ***,considering the dynamic seasonal variations in the wave direction over time,the network models wave dynamic spatial dependencies from long-and short-term pattern ***,to correlate multiple characteristics with SWH,the network introduces a cross-characteristic transformer to effectively fuse multiple ***,we conducted experiments on two datasets from the South China Sea and East China Sea to validate the proposed method and compared it with five prediction methods in the three *** experimental results show that the proposed method achieves the best performance at all predictive scales and has greater advantages for extreme value ***,an analysis of the dynamic graph shows that the proposed method captures the seasonal variation mechanism of the waves.
Nowadays, trust management plays a significant role in different applications like commercial applications, Internet of Things (IoT) based applications, social networking applications, cloud computing-based applicatio...
详细信息
暂无评论