Agriculture, a foundation of India's economy, faces challenges in maximizing yield and resource efficiency. This research presents a machine learning-based system to recommend optimal crops and fertilizers based o...
详细信息
The boundaries and regions between individual classes in biomedical image classification are hazy and overlapping. These overlapping features make predicting the correct classification result for biomedical imaging da...
详细信息
The boundaries and regions between individual classes in biomedical image classification are hazy and overlapping. These overlapping features make predicting the correct classification result for biomedical imaging data a difficult diagnostic task. Thus, in precise classification, it is frequently necessary to obtain all necessary information before making a decision. This paper presents a novel deep-layered design architecture based on Neuro-Fuzzy-Rough intuition to predict hemorrhages using fractured bone images and head CT scans. To deal with data uncertainty, the proposed architecture design employs a parallel pipeline with rough-fuzzy layers. In this case, the rough-fuzzy function functions as a membership function, incorporating the ability to process rough-fuzzy uncertainty information. It not only improves the deep model's overall learning process, but it also reduces feature dimensions. The proposed architecture design improves the model's learning and self-adaptation capabilities. In experiments, the proposed model performed well, with training and testing accuracies of 96.77% and 94.52%, respectively, in detecting hemorrhages using fractured head images. The comparative analysis shows that the model outperforms existing models by an average of 2.6$\pm$0.90% on various performance metrics. IEEE
Multilevel characterization of the recently developed Unknown Protein Sequence (UPS) is significant for the drug-designing, disease-diagnosis, and treatment plans. UPS can demonstrate harmful as well as useful charact...
详细信息
Smart agriculture systems leverage the possibilities offered by cutting-edge technologies such as IoT, AI, and remote sensing to revolutionize conventional farming by enhancing resource utilization, production, and cr...
详细信息
ISBN:
(纸本)9798331509675
Smart agriculture systems leverage the possibilities offered by cutting-edge technologies such as IoT, AI, and remote sensing to revolutionize conventional farming by enhancing resource utilization, production, and crop damage mitigation. Real-time monitoring of soil and crop health, predictive analytics, pest control, and precision irrigation measures are all enabled by these systems. They are able to address major Indian agriculture issues, consequently boosting yield and profitability and promoting environmental sustainability. The largescale deployment of intelligent agriculture systems will change the agriculture landscape in India and will assure long-term food security for an ever-growing population. Challenges include adequate research and future studies in order to better install and achieve smart agricultural systems to protect crops. Intelligent agriculture involves all advanced research, including science and innovations, in national development through space technologies to enhance soil quality, conserve water, and facilitate agriculture information. Space ventures will undergo improved modernization through the introduction of crop sprayers, precision gene editors, epigenetics, big data analytics, IoT, wind and photovoltaic smart energy, AI-enabled robotic applications, and wide-scale desalination technologies. Implementing digital farming systems in developing economies will help their sectors as 85 percent of the global population is set to live in developing countries by 2030. Automation will prove to be necessary since food scarcity is on the rise along with resource wastage. Control strategies such as the IoT, aerial imagery, machine learning, and artificial intelligence will boost production and prevent soil degradation. These advanced technologies are also able to alleviate such issues as plant disease detection, pesticide management, and water application. The introduction of the Internet of Things in the agricultural research world has started
Today, machine learning is used in a broad variety of applications. Convolution neural networks (CNN), in particular, are widely used to analyze visual data. The fashion industry is catching up to the growing usage of...
详细信息
Extracting large amounts of information and knowledge from a large database is a trivial task. Existing bulk item mining algorithms for an extensive database are systematic and mathematically expensive and cannot be u...
详细信息
Network updates have become increasingly prevalent since the broad adoption of software-defined networks(SDNs)in data *** TCP designs,including cutting-edge TCP variants DCTCP,CUBIC,and BBR,however,are not resilient t...
详细信息
Network updates have become increasingly prevalent since the broad adoption of software-defined networks(SDNs)in data *** TCP designs,including cutting-edge TCP variants DCTCP,CUBIC,and BBR,however,are not resilient to network updates that provoke flow *** this paper,we first demonstrate that popular TCP implementations perform inadequately in the presence of frequent and inconsistent network updates,because inconsistent and frequent network updates result in out-of-order packets and packet drops induced via transitory congestion and lead to serious performance *** look into the causes and propose a network update-friendly TCP(NUFTCP),which is an extension of the DCTCP variant,as a *** are used to assess the proposed *** findings reveal that NUFTCP can more effectively manage the problems of out-of-order packets and packet drops triggered in network updates,and it outperforms DCTCP considerably.
Gender identification from videos is a challenging task with significant real-world applications, such as video content analysis and social behavior research. In this study, we propose a novel approach, the White Shar...
详细信息
For autonomous driving to operate in a safe and effective manner, efficient and precise object detection is essential. The efficacy of the network model is heavily challenged because of the high-speed movement of vehi...
详细信息
This paper introduces an artificial intelligence (AI) methodology designed to enhance the output of two-dimensional (2D) electromagnetic imaging systems, specifically tailored for the imaging of conductive objects uti...
详细信息
暂无评论