Massive Open Online Courses (MOOC) represent a relatively recent development in the educational landscape, rapidly gaining popularity and drawing research attention. Transforming the traditional approach to education,...
详细信息
The unpredictable nature of cryptocurrency markets, particularly Bitcoin, has attracted significant attention from investors, researchers, and financial institutions seeking to understand and predict price movements. ...
详细信息
In order to promote the evaluation performance of deep learning infrared automatic target recognition (ATR) algorithms in the complex environment of air-to-air missile research, we proposed an analytic hierarchy proce...
详细信息
Public opinion on international conflicts, such as the concurrent Russia-Ukraine and Israel-Palestine crises, often reflects a society's values, beliefs, and history. These simultaneous conflicts have sparked heat...
详细信息
This article evaluates an academic application designed to provide career guidance using the User Experience Questionnaire (UEQ). A survey involving 255 respondents assessed the application across 6 UX dimensions: att...
详细信息
As the boom of mobile devices,Android mobile apps play an irreplaceable roles in people’s daily life,which have the characteristics of frequent updates involving in many code commits to meet new ***-in-Time(JIT)defec...
详细信息
As the boom of mobile devices,Android mobile apps play an irreplaceable roles in people’s daily life,which have the characteristics of frequent updates involving in many code commits to meet new ***-in-Time(JIT)defect prediction aims to identify whether the commit instances will bring defects into the new release of apps and provides immediate feedback to developers,which is more suitable to mobile *** the within-app defect prediction needs sufficient historical data to label the commit instances,which is inadequate in practice,one alternative method is to use the cross-project *** this work,we propose a novel method,called KAL,for cross-project JIT defect prediction task in the context of Android mobile *** specifically,KAL first transforms the commit instances into a high-dimensional feature space using kernel-based principal component analysis technique to obtain the representative ***,the adversarial learning technique is used to extract the common feature embedding for the model *** conduct experiments on 14 Android mobile apps and employ four effort-aware indicators for performance *** results on 182 cross-project pairs demonstrate that our proposed KAL method obtains better performance than 20 comparative methods.
Bilevel optimization has been recently applied to many machine learning tasks. However, their applications have been restricted to the supervised learning setting, where static objective functions with benign structur...
详细信息
Bilevel optimization has been recently applied to many machine learning tasks. However, their applications have been restricted to the supervised learning setting, where static objective functions with benign structures are considered. But bilevel problems such as incentive design, inverse reinforcement learning (RL), and RL from human feedback (RLHF) are often modeled as dynamic objective functions that go beyond the simple static objective structures, which pose significant challenges of using existing bilevel solutions. To tackle this new class of bilevel problems, we introduce the first principled algorithmic framework for solving bilevel RL problems through the lens of penalty formulation. We provide theoretical studies of the problem landscape and its penalty-based (policy) gradient algorithms. We demonstrate the effectiveness of our algorithms via simulations in the Stackelberg game and RLHF. Copyright 2024 by the author(s)
Skin diseases are prevalent in Thailand due to the hot temperatures, humid climate, and increasing diversity of skin tones, which complicates diagnosis. Artificial intelligence (AI) has improved skin disease detection...
详细信息
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties. Such information is coined as guidance. For example, in text-t...
详细信息
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties. Such information is coined as guidance. For example, in text-to-image synthesis, text input is encoded as guidance to generate semantically aligned images. Proper guidance inputs are closely tied to the performance of diffusion models. A common observation is that strong guidance promotes a tight alignment to the task-specific information, while reducing the diversity of the generated samples. In this paper, we provide the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models. Under mild conditions, we prove that incorporating diffusion guidance not only boosts classification confidence but also diminishes distribution diversity, leading to a reduction in the differential entropy of the output distribution. Our analysis covers the widely adopted sampling schemes including those based on the SDE and ODE reverse processes, and leverages comparison inequalities for differential equations as well as the Fokker-Planck equation that characterizes the evolution of probability density function, which may be of independent theoretical interest. Copyright 2024 by the author(s)
In recent years, there has been a significant rise in the phenomenon of hate against women on social media platforms, particularly through the use of misogynous memes. These memes often target women with subtle and ob...
详细信息
暂无评论