咨询与建议

限定检索结果

文献类型

  • 687 篇 会议
  • 478 篇 期刊文献
  • 10 册 图书

馆藏范围

  • 1,175 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 713 篇 工学
    • 390 篇 计算机科学与技术...
    • 342 篇 软件工程
    • 197 篇 控制科学与工程
    • 160 篇 电气工程
    • 118 篇 信息与通信工程
    • 109 篇 机械工程
    • 84 篇 电子科学与技术(可...
    • 68 篇 生物工程
    • 67 篇 生物医学工程(可授...
    • 54 篇 动力工程及工程热...
    • 53 篇 光学工程
    • 46 篇 仪器科学与技术
    • 33 篇 交通运输工程
    • 27 篇 化学工程与技术
    • 21 篇 力学(可授工学、理...
    • 21 篇 材料科学与工程(可...
    • 21 篇 航空宇航科学与技...
    • 20 篇 安全科学与工程
  • 355 篇 理学
    • 167 篇 数学
    • 97 篇 物理学
    • 79 篇 系统科学
    • 73 篇 生物学
    • 45 篇 统计学(可授理学、...
    • 35 篇 化学
  • 170 篇 管理学
    • 119 篇 管理科学与工程(可...
    • 54 篇 图书情报与档案管...
    • 47 篇 工商管理
  • 49 篇 医学
    • 42 篇 临床医学
    • 34 篇 基础医学(可授医学...
    • 28 篇 药学(可授医学、理...
  • 16 篇 经济学
  • 16 篇 法学
  • 6 篇 农学
  • 5 篇 教育学
  • 4 篇 艺术学
  • 2 篇 文学
  • 1 篇 军事学

主题

  • 29 篇 mathematical mod...
  • 27 篇 control systems
  • 23 篇 neural networks
  • 22 篇 automation
  • 21 篇 robustness
  • 20 篇 laboratories
  • 18 篇 image segmentati...
  • 17 篇 cellular neural ...
  • 17 篇 optimization
  • 16 篇 computational mo...
  • 16 篇 automatic contro...
  • 16 篇 computer network...
  • 15 篇 reinforcement le...
  • 15 篇 computer archite...
  • 15 篇 machine learning
  • 15 篇 artificial intel...
  • 14 篇 semantics
  • 14 篇 nonlinear system...
  • 14 篇 sensors
  • 13 篇 predictive model...

机构

  • 29 篇 department of au...
  • 22 篇 department of au...
  • 21 篇 school of automa...
  • 19 篇 college of compu...
  • 18 篇 institute of aut...
  • 17 篇 school of artifi...
  • 16 篇 school of automa...
  • 14 篇 school of automa...
  • 13 篇 infn sezione di ...
  • 13 篇 north-west unive...
  • 13 篇 department of au...
  • 13 篇 université de st...
  • 13 篇 ncsr demokritos ...
  • 13 篇 infn sezione di ...
  • 13 篇 infn sezione di ...
  • 13 篇 infn sezione di ...
  • 13 篇 universitat poli...
  • 13 篇 tbilisi state un...
  • 13 篇 uclouvain centre...
  • 13 篇 università di ge...

作者

  • 39 篇 niyato dusit
  • 36 篇 kang jiawen
  • 21 篇 zhu dajiang
  • 21 篇 liu zhengliang
  • 21 篇 li xiang
  • 21 篇 du hongyang
  • 20 篇 liu tianming
  • 19 篇 xiong zehui
  • 18 篇 wu zihao
  • 16 篇 ma chong
  • 16 篇 shen dinggang
  • 15 篇 gang xiong
  • 14 篇 jiang xi
  • 14 篇 dai haixing
  • 14 篇 peng shi
  • 13 篇 chen a.
  • 13 篇 benoit d.m.
  • 13 篇 ferrara g.
  • 13 篇 ardid m.
  • 13 篇 calvo d.

语言

  • 1,084 篇 英文
  • 81 篇 其他
  • 12 篇 中文
检索条件"机构=Department of Computing Engineering and Automation"
1175 条 记 录,以下是531-540 订阅
排序:
Automated polysomnography analysis for detection of non-apneic and non-hypopneic arousals using feature engineering and a bidirectional lstm network
arXiv
收藏 引用
arXiv 2019年
作者: Rad, Ali Bahrami Zabihi, Morteza Zhao, Zheng Gabbouj, Moncef Katsaggelos, Aggelos K. Särkkä, Simo Department of Electrical Engineering and Automation Aalto University Espoo02150 Finland Department of Computing Sciences Tampere University Tampere33014 Finland Department of Electrical Engineering and Computer Science Northwestern University EvanstonIL60208 United States
The aim of this study is to develop an automated classification algorithm for polysomnography (PSG) recordings to detect non-apneic and non-hypopneic arousals. Our particular focus is on detecting the respiratory effo... 详细信息
来源: 评论
REFUGE2 CHALLENGE: A TREASURE TROVE FOR MULTI-DIMENSION ANALYSIS AND EVALUATION IN GLAUCOMA SCREENING
arXiv
收藏 引用
arXiv 2022年
作者: Fang, Huihui Li, Fei Wu, Junde Fu, Huazhu Sun, Xu Son, Jaemin Yu, Shuang Zhang, Menglu Yuan, Chenglang Bian, Cheng Lei, Baiying Zhao, Benjian Xu, Xinxing Li, Shaohua Fumero, Francisco Sigut, José Almubarak, Haidar Bazi, Yakoub Guo, Yuanhao Zhou, Yating Baid, Ujjwal Innani, Shubham Guo, Tianjiao Yang, Jie Orlando, José Ignacio Bogunović, Hrvoje Zhang, Xiulan Xu, Yanwu The REFUGE2 Challenge Australia State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat-Sen University Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science Guangzhou China Intelligent Healthcare Unit Baidu Inc. Beijing China The Institute of High Performance Computing Agency for Science Technology and Research Singapore Yatiris Group PLADEMA Institute CONICET UNICEN Tandil Argentina Christian Doppler Lab for Artificial Intelligence in Retina Department of Ophthalmology and Optometry Medical University of Vienna Vienna Austria VUNO Inc Seoul Korea Republic of Tencent HealthCare Tencent Shenzhen China Computer Vision Institute College of Computer Science and Software Engineering of Shenzhen University Shenzhen China School of Biomedical Engineering Health Science Center Shenzhen University China Xiaohe Healthcare ByteDance Guangdong Guangzhou510000 China School of Biomedical Engineering Shenzhen University China College of Computer Science & Software Engineering Shenzhen University China Department of Computer Science and Systems Engineering Universidad de La Laguna Spain Saudi Electronic University Saudi Arabia King Saud University Saudi Arabia Institute of Automation Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China SGGS Institute of Engineering and Technology India Institute of Medical Robotics Shanghai Jiao Tong University China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
With the rapid development of artificial intelligence (AI) in medical image processing, deep learning in color fundus photography (CFP) analysis is also evolving. Although there are some open-source, labeled datasets ... 详细信息
来源: 评论
Foundation models and intelligent decision-making: Progress, challenges, and perspectives
收藏 引用
The Innovation 2025年 第6期6卷
作者: Jincai Huang Yongjun Xu Qi Wang Qi (Cheems) Wang Xingxing Liang Fei Wang Zhao Zhang Wei Wei Boxuan Zhang Libo Huang Jingru Chang Liantao Ma Ting Ma Yuxuan Liang Jie Zhang Jian Guo Xuhui Jiang Xinxin Fan Zhulin An Tingting Li Aiguo Fei Institute of Computing Technology Chinese Academy of Sciences Beijing 100190 China National Engineering Research Center for Software Engineering Peking University Beijing 100871 China College of Systems Engineering National University of Defense Technology Changsha 410073 China Department of Oral Implantology Peking University School and Hospital of Stomatology Beijing 100081 China Laboratory for Big Data and Decision National University of Defense Technology Changsha 410073 China School of Automation Beijing Institute of Technology Beijing 100081 China Huazhong University of Science and Technology Wuhan 430074 China University of Chinese Academy of Sciences Beijing 100049 China State Key Laboratory of AI Safety Beijing 100190 China Department of Automation Tsinghua University Beijing 100084 China School of Information Science and Engineering Dalian Polytechnic University Dalian 116034 China The Hong Kong University of Science and Technology (Guangzhou) Guangzhou 511453 China College of Information and Electrical Engineering China Agricultural University Beijing 100083 China State Key Laboratory of Efficient Utilization of Agricultural Water Resources Beijing 100083 China IDEA Research International Digital Economy Academy Shenzhen 518057 China School of Computer Science National Pilot Software Engineering School Beijing University of Posts and Telecommunications Beijing 100876 China
Intelligent decision-making (IDM) is a cornerstone of artificial intelligence (AI) designed to automate or augment decision processes. Modern IDM paradigms integrate advanced frameworks to enable intelligent agents to... 详细信息
来源: 评论
Notice of Retraction: Adaptive Decentralized Tracking Control for Nonlinear Large-Scale Systems
收藏 引用
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 2021年 第5期29卷 789-789页
作者: Karthik Chandran Weidong Zhang Rajalakshmi Murugesan S. Prasanna A. Baseera Sanjeevi Pandiyan Department of Automation Shanghai Jiao Tong University Shanghai China Department of Mechatronics Jyothi Engineering College Thrissur India Department of EEE Ultra College of Engineering and Technology India School of Information Technology and Engineering VIT Vellore India School of Computing Science and Engineering VIT Bhopal University India Key Laboratory of Advanced Process Control for Light Industry Ministry of Education Jiangnan University Wuxi 214122 China
This article has been retracted at the request of the first and corresponding author, Dr. Karthik Chandran. The author has alerted the Editor-in-Chief of IJUFKS the reasons for the retraction: The proposed system was ...
来源: 评论
Kronecker CP decomposition with fast multiplication for compressing RNNs
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Dingheng Wu, Bijiao Zhao, Guangshe Yao, Man Chen, Hengnu Deng, Lei Yan, Tianyi Li, Guoqi School of Automation Science and Engineering Faculty of Electronic and Information Engineering Xi'an Jiaotong University Shaanxi Xi'an710049 China Department of Precision Instrumentation Center for Brain Inspired Computing Research Beijing Innovation Center for Future Chip Tsinghua University Beijing100084 China University of California Santa BarbaraCA93106 United States School of Life Science Beijing Institute of Technology Beijing100084 China
Recurrent neural networks (RNNs) are powerful in the tasks oriented to sequential data, such as natural language processing and video recognition. However, since the modern RNNs, including long-short term memory (LSTM... 详细信息
来源: 评论
Dissimilarity based choquet integrals  18th
Dissimilarity based choquet integrals
收藏 引用
18th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2020
作者: Bustince, Humberto Mesiar, Radko Fernandez, Javier Galar, Mikel Paternain, Daniel Altalhi, Abdulrahman Dimuro, Graçaliz P. Bedregal, Benjamín Takáč, Zdenko Departamento de Estadistica Informatica y Matematicas Universidad Pública de Navarra Campus Arrosadía s/n P.O. Box 31006 Pamplona Spain Department of Mathematics and Descriptive Geometry Faculty of Civil Engineering Slovak University of Technology Bratislava Slovakia Faculty of Computing and Information Technology King Abdulaziz University Jeddah Saudi Arabia Centro de Ciências Computacionais Universidade Federal do Rio Grande Rio Grande96077540 Brazil Departamento de Informática e Matemática Aplicada Universidade Federal do Rio Grande do Norte Natal59078-970 Brazil Institute of Information Engineering Automation and Mathematics Faculty of Chemical and Food Technology Slovak University of Technology in Bratislava Radlinského 9 Bratislava Slovakia
In this paper, in order to generalize the Choquet integral, we replace the difference between inputs in its definition by a restricted dissimilarity function and refer to the obtained function as d-Choquet integral. F... 详细信息
来源: 评论
Preface
Communications in Computer and Information Science
收藏 引用
Communications in Computer and Information Science 2025年 2194 CCIS卷 v-vi页
作者: Singh, Mayank Tyagi, Vipin Gupta, P.K. Flusser, Jan Ören, Tuncer Cherif, Amar Ramdane Tomar, Ravi G.L. Bajaj Institute of Technology and Management Uttar Pradesh Greater Noida India Academics and Research Department Jaypee University of Engineering and Technology Madhya Pradesh Raghogarh India School of Computing Department of Data Science and Engineering Mohan Babu University Andhra Pradesh Tirupati India Institute of Information Theory and Automation Prague Czech Republic School of Electrical Engineering and Computer Science OttawaON Canada University of Paris-Saclay Paris France Persistent Systems Uttarakhand Dehradun India
来源: 评论
An Amplitudes-Perturbation Data Augmentation Method in Convolutional Neural Networks for EEG Decoding  5
An Amplitudes-Perturbation Data Augmentation Method in Convo...
收藏 引用
5th International Conference on Information, Cybernetics, and Computational Social Systems, ICCSS 2018
作者: Zhang, Xian-Rui Lei, Meng-Ying Li, Yang Department of Automation Sciences and Electrical Engineering Beihang University Beijing China Department of Automation Sciences and Electrical Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing Beijing Advanced Innovation Center for Big Date-based Precision Medicine Beihang University Beijing China
Brain-Computer Interface (BCI)system provides a pathway between humans and the outside world by analyzing brain signals which contain potential neural information. Electroencephalography (EEG)is one of most commonly u... 详细信息
来源: 评论
A novel detection approach for moving object with dynamic background  14
A novel detection approach for moving object with dynamic ba...
收藏 引用
14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, ICNC-FSKD 2018
作者: Lu, Yuqiu Liu, Jingjing Ma, Shiwei Xiu, Xianchao Liu, Wanquan School of Mechatronical Engineering and Automation Shanghai University Shanghai China Department of Applied Mathematics Beijinz Jiaotong University Beijina China Department of Computing Curtin University PerthWA Australia
Moving object detection from video data is one of the most active research points in computer vision area. Recently the 2,0-norm has shown remarkable advantages in signal processing, and the total variation (TV) has b... 详细信息
来源: 评论
Roadmap on soft robotics: multifunctionality, adaptability and growth without borders
收藏 引用
Multifunctional Materials 2022年 第3期5卷 032001-032001页
作者: Mazzolai, Barbara Mondini, Alessio Del Dottore, Emanuela Margheri, Laura Carpi, Federico Suzumori, Koichi Cianchetti, Matteo Speck, Thomas Smoukov, Stoyan K. Burgert, Ingo Keplinger, Tobias Siqueira, Gilberto De Freitas Vanneste, Felix Goury, Olivier Duriez, Christian Nanayakkara, Thrishantha Vanderborght, Bram Brancart, Joost Terryn, Seppe Rich, Steven I. Liu, Ruiyuan Fukuda, Kenjiro Someya, Takao Calisti, Marcello Laschi, Cecilia Sun, Wenguang Wang, Gang Wen, Li Baines, Robert Patiballa, Sree Kalyan Kramer-Bottiglio, Rebecca Rus, Daniela Fischer, Peer Simmel, Friedrich C Lendlein, Andreas Bioinspired Soft Robotics Laboratory Istituto Italiano di Tecnologia Italy Department of Industrial Engineering University of Florence Via di S. Marta 3 Florence50139 Italy Department of Mechanical Engineering Tokyo Institute of Technology Ookayama Meguro Tokyo152-8550 Japan The BioRobotics Institute Scuola Superiore Sant’Anna Pisa56025 Italy Department of Excellence in Robotics & AI Scuola Superiore Sant’Anna Pisa56025 Italy Plant Biomechanics Group & Botanic Garden and Cluster of Excellence livMatS @ FIT University of Freiburg Germany Active and Intelligent Materials Laboratory Queen Mary University of London LondonE1 4NS United Kingdom Wood Materials Science Institute for Building Materials ETH Zurich Zurich8093 Switzerland Cellulose and Wood Materials Laboratory Empa Swiss Federal Laboratories for Materials Science and Technology Dübendorf8600 Switzerland University of Lille Inria CNRS Centrale Lille UMR 9189 CRIStAL LilleF-59000 France Dyson School of Design Engineering Imperial College London United Kingdom Vrije Universiteit Brussel and imec Brussels Belgium Thin-Film Device Laboratory RIKEN 2-1 Hirosawa Saitama Wako351-0198 Japan Center for Emergent Matter Science RIKEN 2-1 Hirosawa Saitama Wako351-0198 Japan Electrical and Electronic Engineering and Information Systems The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo113-8656 Japan The BioRobotics Institute Scuola Superiore Sant’Anna Italy Lincoln Institute for Agri-food Technology University of Lincoln Lincoln United Kingdom Department of Mechanical Engineering National University of Singapore Singapore School of Mechanical Engineering and Automation Beihang University Beijing100191 China Department of Mechanical Engineering and Materials Science Yale University New HavenCT06511 United States CSAIL MIT Schwarzman College of Computing United States Max Planck Institute for Intelligent Systems Heisenbergstr. 3 Stuttgart70569 Germany Institute of Physical Chemistry
Soft robotics aims at creating systems with improved performance of movement and adaptability in unknown, challenging, environments and with higher level of safety during interactions with humans. This Roadmap on Soft... 详细信息
来源: 评论