As optimization problems continue to grow in complexity,the need for effective metaheuristic algorithms becomes increasingly ***,the challenge lies in identifying the right parameters and strategies for these *** this...
详细信息
As optimization problems continue to grow in complexity,the need for effective metaheuristic algorithms becomes increasingly ***,the challenge lies in identifying the right parameters and strategies for these *** this paper,we introduce the adaptive multi-strategy Rabbit Algorithm(RA).RA is inspired by the social interactions of rabbits,incorporating elements such as exploration,exploitation,and adaptation to address optimization *** employs three distinct subgroups,comprising male,female,and child rabbits,to execute a multi-strategy *** parameters,including distance factor,balance factor,and learning factor,strike a balance between precision and computational *** offer practical recommendations for fine-tuning five essential RA parameters,making them versatile and *** is capable of autonomously selecting adaptive parameter settings and mutation strategies,enabling it to successfully tackle a range of 17 CEC05 benchmark functions with dimensions scaling up to *** results underscore RA’s superior performance in large-scale optimization tasks,surpassing other state-of-the-art metaheuristics in convergence speed,computational precision,and ***,RA has demonstrated its proficiency in solving complicated optimization problems in real-world engineering by completing 10 problems in CEC2020.
Exemplar-based image translation involves converting semantic masks into photorealistic images that adopt the style of a given ***,most existing GAN-based translation methods fail to produce photorealistic *** this st...
详细信息
Exemplar-based image translation involves converting semantic masks into photorealistic images that adopt the style of a given ***,most existing GAN-based translation methods fail to produce photorealistic *** this study,we propose a new diffusion model-based approach for generating high-quality images that are semantically aligned with the input mask and resemble an exemplar in *** proposed method trains a conditional denoising diffusion probabilistic model(DDPM)with a SPADE module to integrate the semantic *** then used a novel contextual loss and auxiliary color loss to guide the optimization process,resulting in images that were visually pleasing and semantically *** demonstrate that our method outperforms state-of-the-art approaches in terms of both visual quality and quantitative metrics.
Video surveillance is widely adopted across various sectors for purposes such as law enforcement, COVID-19 isolation monitoring, and analyzing crowds for potential threats like flash mobs or violence. The vast amount ...
详细信息
In this work, we introduce a class of black-box(BB) reductions called committed-programming reduction(CPRed) in the random oracle model(ROM) and obtain the following interesting results:(1) we demonstrate that some we...
详细信息
In this work, we introduce a class of black-box(BB) reductions called committed-programming reduction(CPRed) in the random oracle model(ROM) and obtain the following interesting results:(1) we demonstrate that some well-known schemes, including the full-domain hash(FDH) signature(Eurocrypt1996) and the Boneh-Franklin identity-based encryption(IBE) scheme(Crypto 2001), are provably secure under CPReds;(2) we prove that a CPRed associated with an instance-extraction algorithm implies a reduction in the quantum ROM(QROM). This unifies several recent results, including the security of the Gentry-Peikert-Vaikuntanathan IBE scheme by Zhandry(Crypto 2012) and the key encapsulation mechanism(KEM) variants using the Fujisaki-Okamoto transform by Jiang et al.(Crypto 2018) in the ***, we show that CPReds are incomparable to non-programming reductions(NPReds) and randomly-programming reductions(RPReds) formalized by Fischlin et al.(Asiacrypt 2010).
We present a novel attention-based mechanism to learn enhanced point features for point cloud processing tasks, e.g., classification and segmentation. Unlike prior studies, which were trained to optimize the weights o...
详细信息
We present a novel attention-based mechanism to learn enhanced point features for point cloud processing tasks, e.g., classification and segmentation. Unlike prior studies, which were trained to optimize the weights of a pre-selected set of attention points, our approach learns to locate the best attention points to maximize the performance of a specific task, e.g., point cloud classification. Importantly, we advocate the use of single attention point to facilitate semantic understanding in point feature learning. Specifically,we formulate a new and simple convolution, which combines convolutional features from an input point and its corresponding learned attention point(LAP). Our attention mechanism can be easily incorporated into state-of-the-art point cloud classification and segmentation networks. Extensive experiments on common benchmarks, such as Model Net40, Shape Net Part, and S3DIS, all demonstrate that our LAP-enabled networks consistently outperform the respective original networks, as well as other competitive alternatives, which employ multiple attention points, either pre-selected or learned under our LAP framework.
Deep reinforcement learning(DRL) has demonstrated significant potential in industrial manufacturing domains such as workshop scheduling and energy system ***, due to the model's inherent uncertainty, rigorous vali...
详细信息
Deep reinforcement learning(DRL) has demonstrated significant potential in industrial manufacturing domains such as workshop scheduling and energy system ***, due to the model's inherent uncertainty, rigorous validation is requisite for its application in real-world tasks. Specific tests may reveal inadequacies in the performance of pre-trained DRL models, while the “black-box” nature of DRL poses a challenge for testing model behavior. We propose a novel performance improvement framework based on probabilistic automata,which aims to proactively identify and correct critical vulnerabilities of DRL systems, so that the performance of DRL models in real tasks can be improved with minimal model ***, a probabilistic automaton is constructed from the historical trajectory of the DRL system by abstracting the state to generate probabilistic decision-making units(PDMUs), and a reverse breadth-first search(BFS) method is used to identify the key PDMU-action pairs that have the greatest impact on adverse outcomes. This process relies only on the state-action sequence and final result of each trajectory. Then, under the key PDMU, we search for the new action that has the greatest impact on favorable results. Finally, the key PDMU, undesirable action and new action are encapsulated as monitors to guide the DRL system to obtain more favorable results through real-time monitoring and correction mechanisms. Evaluations in two standard reinforcement learning environments and three actual job scheduling scenarios confirmed the effectiveness of the method, providing certain guarantees for the deployment of DRL models in real-world applications.
As a result of its aggressive nature and late identification at advanced stages, lung cancer is one of the leading causes of cancer-related deaths. Lung cancer early diagnosis is a serious and difficult challenge that...
详细信息
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)*** networks give a safe and more effective driving experie...
详细信息
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)*** networks give a safe and more effective driving experience by presenting time-sensitive and location-aware *** communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with ***,the scheme of an effectual routing protocol for reliable and stable communications is *** research demonstrates that clustering is an intelligent method for effectual routing in a mobile ***,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in *** FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the *** accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust *** the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR *** experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.
This study introduces CLIP-Flow,a novel network for generating images from a given image or *** effectively utilize the rich semantics contained in both modalities,we designed a semantics-guided methodology for image-...
详细信息
This study introduces CLIP-Flow,a novel network for generating images from a given image or *** effectively utilize the rich semantics contained in both modalities,we designed a semantics-guided methodology for image-and text-to-image *** particular,we adopted Contrastive Language-Image Pretraining(CLIP)as an encoder to extract semantics and StyleGAN as a decoder to generate images from such ***,to bridge the embedding space of CLIP and latent space of StyleGAN,real NVP is employed and modified with activation normalization and invertible *** the images and text in CLIP share the same representation space,text prompts can be fed directly into CLIP-Flow to achieve text-to-image *** conducted extensive experiments on several datasets to validate the effectiveness of the proposed image-to-image synthesis *** addition,we tested on the public dataset Multi-Modal CelebA-HQ,for text-to-image *** validated that our approach can generate high-quality text-matching images,and is comparable with state-of-the-art methods,both qualitatively and quantitatively.
Glaucoma is an ophthalmic disorder which results in permanent vision loss because high intraocular pressure damages the optic nerve in the eye. This paper proposes a two-stage network for automated glaucoma identifica...
详细信息
暂无评论