Video surveillance is widely adopted across various sectors for purposes such as law enforcement, COVID-19 isolation monitoring, and analyzing crowds for potential threats like flash mobs or violence. The vast amount ...
详细信息
In this work, we introduce a class of black-box(BB) reductions called committed-programming reduction(CPRed) in the random oracle model(ROM) and obtain the following interesting results:(1) we demonstrate that some we...
详细信息
In this work, we introduce a class of black-box(BB) reductions called committed-programming reduction(CPRed) in the random oracle model(ROM) and obtain the following interesting results:(1) we demonstrate that some well-known schemes, including the full-domain hash(FDH) signature(Eurocrypt1996) and the Boneh-Franklin identity-based encryption(IBE) scheme(Crypto 2001), are provably secure under CPReds;(2) we prove that a CPRed associated with an instance-extraction algorithm implies a reduction in the quantum ROM(QROM). This unifies several recent results, including the security of the Gentry-Peikert-Vaikuntanathan IBE scheme by Zhandry(Crypto 2012) and the key encapsulation mechanism(KEM) variants using the Fujisaki-Okamoto transform by Jiang et al.(Crypto 2018) in the ***, we show that CPReds are incomparable to non-programming reductions(NPReds) and randomly-programming reductions(RPReds) formalized by Fischlin et al.(Asiacrypt 2010).
We present a novel attention-based mechanism to learn enhanced point features for point cloud processing tasks, e.g., classification and segmentation. Unlike prior studies, which were trained to optimize the weights o...
详细信息
We present a novel attention-based mechanism to learn enhanced point features for point cloud processing tasks, e.g., classification and segmentation. Unlike prior studies, which were trained to optimize the weights of a pre-selected set of attention points, our approach learns to locate the best attention points to maximize the performance of a specific task, e.g., point cloud classification. Importantly, we advocate the use of single attention point to facilitate semantic understanding in point feature learning. Specifically,we formulate a new and simple convolution, which combines convolutional features from an input point and its corresponding learned attention point(LAP). Our attention mechanism can be easily incorporated into state-of-the-art point cloud classification and segmentation networks. Extensive experiments on common benchmarks, such as Model Net40, Shape Net Part, and S3DIS, all demonstrate that our LAP-enabled networks consistently outperform the respective original networks, as well as other competitive alternatives, which employ multiple attention points, either pre-selected or learned under our LAP framework.
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)*** networks give a safe and more effective driving experie...
详细信息
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)*** networks give a safe and more effective driving experience by presenting time-sensitive and location-aware *** communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with ***,the scheme of an effectual routing protocol for reliable and stable communications is *** research demonstrates that clustering is an intelligent method for effectual routing in a mobile ***,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in *** FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the *** accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust *** the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR *** experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.
This study introduces CLIP-Flow,a novel network for generating images from a given image or *** effectively utilize the rich semantics contained in both modalities,we designed a semantics-guided methodology for image-...
详细信息
This study introduces CLIP-Flow,a novel network for generating images from a given image or *** effectively utilize the rich semantics contained in both modalities,we designed a semantics-guided methodology for image-and text-to-image *** particular,we adopted Contrastive Language-Image Pretraining(CLIP)as an encoder to extract semantics and StyleGAN as a decoder to generate images from such ***,to bridge the embedding space of CLIP and latent space of StyleGAN,real NVP is employed and modified with activation normalization and invertible *** the images and text in CLIP share the same representation space,text prompts can be fed directly into CLIP-Flow to achieve text-to-image *** conducted extensive experiments on several datasets to validate the effectiveness of the proposed image-to-image synthesis *** addition,we tested on the public dataset Multi-Modal CelebA-HQ,for text-to-image *** validated that our approach can generate high-quality text-matching images,and is comparable with state-of-the-art methods,both qualitatively and quantitatively.
Bias detection and mitigation is an active area of research in machine learning. This work extends previous research done by the authors Van Busum and Fang (Proceedings of the 38th ACM/SIGAPP Symposium on Applied Comp...
详细信息
Industrial Internet of Things(IIoT)systems depend on a growing number of edge devices such as sensors,controllers,and robots for data collection,transmission,storage,and *** kind of malicious or abnormal function by e...
详细信息
Industrial Internet of Things(IIoT)systems depend on a growing number of edge devices such as sensors,controllers,and robots for data collection,transmission,storage,and *** kind of malicious or abnormal function by each of these devices can jeopardize the security of the entire ***,they can allow malicious software installed on end nodes to penetrate the *** paper presents a parallel ensemble model for threat hunting based on anomalies in the behavior of IIoT edge *** proposed model is flexible enough to use several state-of-the-art classifiers as the basic learner and efficiently classifies multi-class anomalies using the Multi-class AdaBoost and majority *** evaluations using a dataset consisting of multi-source normal records and multi-class anomalies demonstrate that our model outperforms existing approaches in terms of accuracy,F1 score,recall,and precision.
Wireless Ad Hoc Networks consist of devices that are wirelessly *** Ad Hoc Networks(MANETs),Internet of Things(IoT),and Vehicular Ad Hoc Networks(VANETs)are the main domains of wireless ad hoc *** is used in wireless ...
详细信息
Wireless Ad Hoc Networks consist of devices that are wirelessly *** Ad Hoc Networks(MANETs),Internet of Things(IoT),and Vehicular Ad Hoc Networks(VANETs)are the main domains of wireless ad hoc *** is used in wireless ad hoc *** is based on Transmission Control Protocol(TCP)/Internet Protocol(IP)network where clients and servers interact with each other with the help of IP in a pre-defined *** fetches data from a fixed *** redundancy,mobility,and location dependency are the main issues of the IP network *** these factors result in poor performance of wireless ad hoc *** main disadvantage of IP is that,it does not provide in-network ***,there is a need to move towards a new network that overcomes these *** Data Network(NDN)is a network that overcomes these *** is a project of Information-centric Network(ICN).NDN provides in-network caching which helps in fast response to user *** NDN in wireless ad hoc network provides many benefits such as caching,mobility,scalability,security,and *** considering the certainty,in this survey paper,we present a comprehensive survey on Caching Strategies in NDN-based Wireless *** cachingmechanism-based results are also *** the last,we also shed light on the challenges and future directions of this promising field to provide a clear understanding of what caching-related problems exist in NDN-based wireless ad hoc networks.
Large Language Models(LLMs) have become widely recognized in recent years for their exceptional performance in language generation capabilities. As a result, an unprecedented rise is seen in its use cases in various d...
详细信息
ISBN:
(纸本)9798331508692
Large Language Models(LLMs) have become widely recognized in recent years for their exceptional performance in language generation capabilities. As a result, an unprecedented rise is seen in its use cases in various domains specifically involving Natural Language Processing(NLP). These models however perform suboptimally when exploited in the field of studies where authenticity of the generated content is a critical aspect. One such domain is usage of LLM for exploration of the life of Prophet Muhammad S.A.W(commonly referred to as Seerah). It is of utmost significance to ensure the authenticity and reliability in the sources used and reported by the LLM due to the sensitive nature of the domain. The contemporary LLMs, however, lack the explainability in their response due to their inherent black-box nature. In our study, we have presented a novel LLM named SeerahGPT that addresses this challenge with the help of retrieval-augmented generation (RAG). This technique enables the model to utilize both parametric and nonparametric memories for generating response of queries. Our model, built on the Llama-2-7b architecture, employs Sentence Transformer embedding to effectively retrieve relevant information. The model's capabilities are augmented by integrating it with a corpus having Islamic texts such as the Quranic translation and Hadith collections, and historical accounts. The model's performance is benchmarked against its base model using both quantitative and qualitative metrics. The comparative analysis with Llama-2-7b revealed that SeerahGPT incorporation with external knowledge sources, provided more authentic and verifiable responses, despite the others exhibiting greater fluency. Performance metrics such as BLEU, ROUGE, and METEOR indicated SeerahGPT's better accuracy and contextual handling. This study paves way for analysis of such sensitive domains in more efficient way that can be utilized in other complex domains such as Islamic theology and Fiqh or legal
The integration of IoT devices in smart cities enhances urban infrastructure, services, and governance but also introduces significant cybersecurity challenges. Traditional centralized Intrusion Detection Systems (IDS...
详细信息
ISBN:
(纸本)9798331508692
The integration of IoT devices in smart cities enhances urban infrastructure, services, and governance but also introduces significant cybersecurity challenges. Traditional centralized Intrusion Detection Systems (IDS) face several issues, including data privacy concerns and high-power consumption due to centralized data processing. These challenges increase the risks of unauthorized access, data breaches, and privacy violations, undermining user trust and compliance with privacy regulations. Additionally, the centralization of data and processing leads to higher power consumption, making these systems less sustainable for widespread deployment in smart cities. This research addresses these issues by proposing a Federated Learning (FL)based intrusion detection framework for smart cities. FL enables collaborative and privacy-preserving model training across distributed IoT devices, mitigating the need to share sensitive data centrally. By aggregating local model updates, FL ensures data privacy and distributes the computational workload, significantly reducing power consumption compared to traditional centralized systems. The proposed model leverages advanced AI techniques and is trained using the IoTID20 dataset. The Flower framework, utilizing the FedAvg algorithm, facilitates the federated learning process. Our experimental results demonstrate that the global model achieves 98% accuracy, with individual clients achieving accuracies of around 85% to 98%. This approach provides continuous learning mechanisms, anomaly detection, and ensemble learning capabilities, enhancing the resilience of federated intrusion detection systems against emerging threats and adversarial attacks. This research systematically investigates the application of federated learning for intrusion detection in smart city networks, addressing key challenges and advancing the state-of-the-art in decentralized cybersecurity solutions. The proposed framework offers a robust, scalable, and privacyco
暂无评论