咨询与建议

限定检索结果

文献类型

  • 177 篇 期刊文献
  • 123 篇 会议

馆藏范围

  • 300 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 182 篇 工学
    • 133 篇 计算机科学与技术...
    • 113 篇 软件工程
    • 41 篇 生物工程
    • 39 篇 生物医学工程(可授...
    • 24 篇 信息与通信工程
    • 23 篇 光学工程
    • 17 篇 控制科学与工程
    • 15 篇 电气工程
    • 13 篇 机械工程
    • 12 篇 化学工程与技术
    • 11 篇 电子科学与技术(可...
    • 10 篇 安全科学与工程
    • 7 篇 交通运输工程
  • 131 篇 理学
    • 66 篇 数学
    • 46 篇 生物学
    • 33 篇 物理学
    • 30 篇 统计学(可授理学、...
    • 16 篇 化学
    • 8 篇 系统科学
    • 5 篇 大气科学
  • 58 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 26 篇 图书情报与档案管...
    • 16 篇 工商管理
    • 6 篇 公共管理
  • 56 篇 医学
    • 45 篇 临床医学
    • 36 篇 基础医学(可授医学...
    • 22 篇 药学(可授医学、理...
    • 20 篇 公共卫生与预防医...
  • 12 篇 法学
    • 12 篇 社会学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 6 篇 农学
  • 5 篇 教育学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 15 篇 machine learning
  • 11 篇 accuracy
  • 6 篇 computational mo...
  • 6 篇 artificial intel...
  • 6 篇 data models
  • 5 篇 internet of thin...
  • 4 篇 covid-19
  • 4 篇 deep learning
  • 4 篇 learning algorit...
  • 4 篇 data mining
  • 4 篇 real-time system...
  • 4 篇 clustering algor...
  • 4 篇 machine learning...
  • 4 篇 measurement
  • 4 篇 forecasting
  • 4 篇 training
  • 3 篇 mammography
  • 3 篇 reliability
  • 3 篇 generative adver...
  • 3 篇 big data

机构

  • 6 篇 data analytics d...
  • 5 篇 artificial intel...
  • 5 篇 university of pe...
  • 5 篇 university of ch...
  • 5 篇 centre for biome...
  • 4 篇 school of mathem...
  • 4 篇 department of hu...
  • 4 篇 institute of act...
  • 4 篇 department of pa...
  • 4 篇 department of co...
  • 4 篇 peking universit...
  • 4 篇 department of co...
  • 3 篇 drexel universit...
  • 3 篇 pattern recognit...
  • 3 篇 center for biome...
  • 3 篇 department of co...
  • 3 篇 department of co...
  • 3 篇 insight centre f...
  • 3 篇 institute for bi...
  • 3 篇 icesco chair for...

作者

  • 7 篇 phung dinh
  • 7 篇 venkatesh svetha
  • 6 篇 lucibello carlo
  • 6 篇 ilya m. nasralla...
  • 6 篇 guray erus
  • 5 篇 junhao wen
  • 5 篇 andrea tangherlo...
  • 5 篇 christos davatzi...
  • 4 篇 nurain ibrahim
  • 4 篇 malatesta enrico...
  • 4 篇 david a. wolk
  • 4 篇 francesca m. buf...
  • 4 篇 ahmed abdulkadir
  • 4 篇 yuhan cui
  • 4 篇 davatzikos chris...
  • 4 篇 elizabeth mamour...
  • 4 篇 haochang shou
  • 4 篇 paolo cazzaniga
  • 3 篇 cazzaniga paolo
  • 3 篇 lauditi clarissa

语言

  • 285 篇 英文
  • 14 篇 其他
  • 1 篇 斯洛文尼亚文
  • 1 篇 中文
检索条件"机构=Department of Computing and Data Analytics"
300 条 记 录,以下是1-10 订阅
排序:
A Modified EACOP Implementation for Real-Parameter Single Objective Optimization Problems  13
A Modified EACOP Implementation for Real-Parameter Single Ob...
收藏 引用
13th IEEE Congress on Evolutionary Computation, CEC 2024
作者: Tangherloni, Andrea Coelho, Vasco Buffa, Francesca M. Cazzaniga, Paolo Bocconi Institute for Data Science and Analytics Bocconi University Department of Computing Sciences Milan Italy University of Milano-Bicocca Department of Informatics Systems and Communication Milan Italy Bocconi University Department of Computing Sciences Milan Italy Bocconi Institute for Data Science and Analytics Italy University of Bergamo Department of Human and Social Sciences Bergamo Italy
Evolutionary algorithms are effective techniques for optimizing non-linear and complex high-dimensional problems. However, most of them require a precise fine-tuning of their functioning settings to achieve satisfacto... 详细信息
来源: 评论
Forest-based Evolutionary Algorithm for Reconstructing Boolean Gene Regulatory Networks  21
Forest-based Evolutionary Algorithm for Reconstructing Boole...
收藏 引用
21st IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2024
作者: Stranieri, Nicolò Buffa, Francesca M. Tangherloni, Andrea Bocconi University Department of Computing Sciences Milan Italy University of Oxford Department of Oncology Oxford United Kingdom Bocconi University Bocconi Institute for Data Science and Analytics Department of Computing Sciences Milan Italy
Gene Regulatory Networks (GRNs) play a fundamental role in orchestrating the expression of our genes through complex interactions between DNA, RNA, proteins, and other molecules. Accurately reconstructing such network... 详细信息
来源: 评论
SACNN-IDS: A self-attention convolutional neural network for intrusion detection in industrial internet of things
收藏 引用
CAAI Transactions on Intelligence Technology 2024年 第6期9卷 1398-1411页
作者: Mimonah Al Qathrady Safi Ullah Mohammed S.Alshehri Jawad Ahmad Sultan Almakdi Samar M.Alqhtani Muazzam A.Khan Baraq Ghaleb Department of Information Systems College of Computer Science and Information SystemsNajran UniversityNajranSaudi Arabia Department of Computer Science Quaid-i-Azam UniversityIslamabadPakistan Department of Computer Science College of Computer Science and Information SystemsNajran UniversityNajranSaudi Arabia School of Computing Engineering and the Built EnvironmentEdinburgh Napier UniversityEdinburghUK ICESCO Chair Big Data Analytics and Edge Computing Quaid-i-Azam UniversityIslamabadPakistan
Industrial Internet of Things(IIoT)is a pervasive network of interlinked smart devices that provide a variety of intelligent computing services in industrial *** IIoT nodes operate confidential data(such as medical,tr... 详细信息
来源: 评论
Q-Rung Orthopair Fuzzy Sets-Enhanced FMEA for COVID-19 Risk Assessment
Informatica (Slovenia)
收藏 引用
Informatica (Slovenia) 2025年 第1期49卷 81-92页
作者: Abdullah, Lazim Awang, Noor Azzah Qiyas, Muhammad Special Interest Group of Modelling and Data Analytics Faculty of Computer Science and Mathematics Universiti Malaysia Terengganu Kuala Nerus21030 Malaysia College of Computing Informatics and Mathematics Universiti Teknologi MARA Selangor Shah Alam40450 Malaysia Department of Mathematics Riphah International University Failsabad Campus Pakistan
Failure Modes and Effects Analysis (FMEA) is a widely used tool for risk analysis, primarily to identify risk factors affecting system quality. Due to the limitations of the traditional FMEA model, several recent mode... 详细信息
来源: 评论
A Fast Feature Selection for Interpretable Modeling Based on Fuzzy Inference Systems  21
A Fast Feature Selection for Interpretable Modeling Based on...
收藏 引用
21st IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2024
作者: Tangherloni, Andrea Cazzaniga, Paolo Stranieri, Nicolò Buffa, Francesca M. Nobile, Marco S. Bocconi Institute for Data Science and Analytics Bocconi University Department of Computing Sciences Milan Italy University of Bergamo Department of Human and Social Sciences Bergamo Italy Bocconi University Department of Computing Sciences Milan Italy Ca' Foscari University of Venice Department of Environmental Sciences Informatics and Statistics Venice Italy
Large datasets are often beneficial for the generation of predictive models using machine learning approaches. However, it is often the case that not all variables in the dataset contain useful information. In fact, s... 详细信息
来源: 评论
Advanced Techniques in Network Traffic Analysis: Utilizing Wireshark For In-Depth Live data Packet Inspection And Information Capture  2
Advanced Techniques in Network Traffic Analysis: Utilizing W...
收藏 引用
2nd IEEE International Conference on Communication, Security and Artificial Intelligence, ICCSAI 2023
作者: Chowhan, Santhosh Saxena, Abhilash Kumar University Department of Data Analytics and Mathematical Sciences Karnataka Bangalore India College of Computing Science and Information Technology Teerthanker Mahaveer University Uttar Pradesh Moradabad India
The escalating frequency and sophistication of cyber-attacks have placed a spotlight on the importance of Quality of Service (QoS) and robust network security mechanisms. Effective traffic analysis and distribution ar... 详细信息
来源: 评论
Exponential Capacity of Dense Associative Memories
收藏 引用
Physical Review Letters 2024年 第7期132卷 077301-077301页
作者: Carlo Lucibello Marc Mézard Department of Computing Sciences Bocconi University Milano 20136 Italy and Bocconi Institute for Data Science and Analytics (BIDSA) Milano 20136 Italy.
Recent generalizations of the Hopfield model of associative memories are able to store a number P of random patterns that grows exponentially with the number N of neurons, P=exp(αN). Besides the huge storage capacity... 详细信息
来源: 评论
Developing a Strategic data Science Roadmap through Trend Analysis and Digital Maturity Assessment
Developing a Strategic Data Science Roadmap through Trend An...
收藏 引用
2024 IEEE International Conference on Technology Management, Operations and Decisions, ICTMOD 2024
作者: Nazliel, Kerem Kayabay, Kerem Gokalp, Mert Onuralp Aydin, Ebru Gokalp Eren, P. Erhan Kocyigit, Altan Graduate School of Informatics Middle East Technical University Ankara Turkey Converged Computing HLRS University of Stuttgart Stuttgart Germany Data Analytics Center TÜPRAŞ Ankara Turkey Hacettepe University Department of Computer Engineering Ankara Turkey
The rapid advancements in data Science and Artificial Intelligence require organizations to create strategic roadmaps that align with both technological trends and business objectives. This paper introduces a data-dri... 详细信息
来源: 评论
DE-ConvGraph 3D UNet: A Novel Deep Learning Model for Optimizing Radiotherapy Treatment Plans in Oropharyngeal Cancer
DE-ConvGraph 3D UNet: A Novel Deep Learning Model for Optimi...
收藏 引用
2023 IEEE Applied Imagery Pattern Recognition Workshop, AIPR 2023
作者: Murugadoss, Bhuvanashree Amudha, J. Sugumaran, Vijayan Amrita Vishwa Vidyapeetham School of Computing Department of Computer Science and Engineering Karnataka Bengaluru India Oakland University Center for Data Science and Big Data Analytics RochesterMI United States Oakland University Department of Decision and Information Sciences RochesterMI United States
Automated radiotherapy treatment planning aims to improve treatment accuracy and efficiency. However, the prevalent Knowledge-Based Planning (KBP) method faces issues like lengthy manual problem formulation and challe... 详细信息
来源: 评论
A Multistage Framework for Detection of Very Small Objects  23
A Multistage Framework for Detection of Very Small Objects
收藏 引用
6th International Conference on Machine Vision and Applications, ICMVA 2023
作者: Don, Duleep Rathgamage Aygun, Ramazan Karakaya, Mahmut School of Data Science and Analytics College of Computing and Software Engineering Kennesaw State University MariettaGA30060 United States Department of Computer Science College of Computing and Software Engineering Kennesaw State University MariettaGA30060 United States
Small object detection is one of the most challenging problems in computer vision. Algorithms based on state-of-the-art object detection methods such as R-CNN, SSD, FPN, and YOLO fail to detect objects of very small s... 详细信息
来源: 评论